JUNE 2008

Code: AE08
Subject: CIRCUIT THEORY \& DESIGN
Time: 3 Hours
Max. Marks: 100
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or best alternative in the
following:
(2x10)

The value of $z_{22}(\Omega)$ for the circuit of Fig. 1 is:
(A) $\frac{4}{11}$
(B) $\frac{11}{4}$
(C) $\frac{4}{9}$
(D) $\frac{9}{4}$
b.

A possible tree of the topological equivalent of the network of Fig. 2 is

(A)

(B)
(C) Neither (A) nor (B)
(D) Both (A) and (B)
c. Given $F(s)=\frac{5 s+3}{s(s+1)}$ then $f\left(0_{0}\right)_{\text {is }}$
(A) 1
(B) 2
(C) 0
(D) 3
d. The two-port matrix of an $n: 1$ ideal transformer is $\left[\begin{array}{cc}\mathrm{n} & 0 \\ 0 & 1 / \mathrm{n}\end{array}\right]$. It describes the transformer in terms of its
(A) z-parameters.
(B) y-parameters.

Fig. 3
(C) Chain-parameters.
(D) h-parameters.
e. The value of $i_{x}(\mathrm{~A})$ (in the circuit of Fig.3) is
(A) 1
(B) 2
(C) 3
(D) 4

f. To effect maximum power transfer to the load, $Z_{L}(\Omega)$ in Fig. 4 should be
(A) 6
(B) 4
(C) $7.211 \lcm{33^{\circ} 69}$
(D) $7.211 /-33^{\circ} 69$
g. The poles of a stable Butter worth polynomial lie on
(A) parabola
(B) left semicircle
(C) right semicircle
(D) an ellipse
h. If $F_{1}(s)$ and $F_{2}(s)$ are p.r., then which of the following are p.r. (Positive Real)?
(A) $\frac{1}{F_{1}(s)}$ and $\frac{1}{F_{2}(s)}$
(B) $F_{1}(s)+F_{2}(s)$
(C) $\frac{F_{1}(s) \cdot F_{2}(s)}{F_{1}(s)+F_{2}(s)}$
(D) All of these
i. For the pole-zero of Fig.5, the network function is

Fig. 5
(A) $\frac{s^{2}(s+1)}{(s+3)(s+2+j)(s+2-j)}$
(B) $\frac{s^{2}(s+2+j)(s+2-j)}{(s+1)(s+3)}$
(C) $\frac{(s+1)\left(s^{2}+4 s+5\right)}{s^{2}(s+3)}$
(D) $\frac{s^{2}(s+3)}{(s+1)\left(s^{2}+4 s+5\right)}$
j. For a series R-C circuit excited by a d-c voltage of 10 V , and with time-constant $\tau_{,} s$, the voltage across C at time $t=\tau$ is given by
(A) $10\left(1-\mathrm{e}^{-1}\right), \mathrm{V}$
(B) $10(1-\mathrm{e}), \mathrm{V}$
(C) $10-\mathrm{e}^{-1}, V$
(D) $1-e^{-1}, V$

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

Q. 2 a. Determine the loop currents, $\mathrm{I}_{1}, \mathrm{I}_{2}$, I_{3} and I_{4} using mesh (loop) analysis for the network shown in Fig.6.

b. Find the power delivered by the 5A current source (in Fig.7) using nodal analysis. (8)

Q. 3 a. The capacitor in the circuit of Fig. 8 is initially charged to 200 V . Find the transient current after the switch is

$$
\begin{align*}
& \text { closed at } \\
& t=0 . \tag{8}
\end{align*}
$$

Fig. 8
b. Determine the r.m.s. value of current, voltage drops across R and L, and power loss when 100 V (r.m.s.), 50 Hz is applied across the series combination of $\mathrm{R}=6 \Omega$ and $\mathrm{L}=\frac{8}{314}$, H. Represent the current and voltages on a phasor diagram.
Q. 4 a. Using Kirchhoff's laws to the network shown in Fig.9, determine the values of ${ }^{v_{6}}$ and ${ }^{i_{5}}$. Verify that the network satisfies Tellegen's theorem. (8)

Fig. 9
b. State Reciprocity Theorem for a linear, bilateral, passive network. Verify reciprocity for the network shown in Fig. 10.
(8)

Q. 5 a. Find
(i) the r.m.s. value of the square-wave shown in Fig.11.
(ii) the average power for the circuit having $z_{\text {in }}=1.05-\mathrm{j} 0.67, \Omega$ when the driving current is $40-\mathrm{j} 3, \mathrm{~A}$.
b. The voltage across an impedance is $80+\mathrm{j} 60$ Volt, and the current though it is $3+\mathrm{j} 4 \mathrm{Amp}$. Determine the impedance and identify its element values, assuming frequency to be 50 Hz . From the phasor diagram, identify the lag or lead of current w.r.t. voltage.
(8)
Q. 6 a. Consider the function $F(s)=\frac{s^{2}+1.03}{s^{2}+1.23}$. Plot its poles and zeroes. Sketch the amplitude and phase for $\mathrm{F}(\mathrm{s})$ for $1 \leq \omega \leq 10$.
b. Determine whether the function $F(s)=\frac{s^{3}+2 s^{2}+3 s+1}{s^{3}+s^{2}+2 s+1}$ is positive real or not.
(8)
Q. 7 a. Given the Z parameters of a two-port network, determine its Y parameters.
(8)

Fig. 12
b. Find the y-parameters for the two-port network of Fig. 12.
(8)
Q. 8 a. Synthesise a one-port L-C network whose driving-point impedance is $Z(s)=\frac{6 s^{3}+2 s}{12 s^{4}+8 s^{2}+1}$
b. Determine the condition for a lattice terminated in R as shown in Fig. 13 to be a constant-resistance network.
(8)

Fig. 13

Q. 9 a. Find the y-parameters of the circuit of Fig. 14 in terms of s. Identify the poles of $y_{i j}(\mathrm{~s})$. Verify whether the residues of poles satisfy the general property of L-C two-port networks.
b. A third-order Butterworth polynomial approximation is desired for designing a low-pass filter. Determine $\mathrm{H}(\mathrm{s})$ and plot its poles. Assume unity d-c gain constant.

