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PART - A   (10 X 2 = 20) 

Answer ALL the Questions 

1. Show that cos4θ = 8cos4θ - 8cos2θ + 1 

 

2. Evaluate [ ]xxx
Lt

logsinh 1 −∞→ −
 

 

3. If cosα, cosβ, costγ are the direction cosines of any line prove 

sin2α + sin2β + sin2γ = 2. 

 

4. Find the equation to the plane parallel to x+3y+5z+1=0 and is 5 

units from the origin. 

 

5. In the rank of A = 
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 is 2, find the value of k. 

 

6. Find the sum of the squares of eigenvalues of the matrix  

A = 
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7. Evaluate ∫ +
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8. Evaluate ∫ ∫ ∫
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9. When n is positive integer, prove that 1+n = n! 

 

10. Define Gamma and Beta functions. 
 

PART – B     (5 x 12 = 60) 

Answer All the Questions 

 

11. Expand Sin8θ in a series of cosines of multiple of θ. 

(or) 

12. If x + iy = sin (A+iB) prove that 
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13. Find the length and the equations of the shortest distance between 

the lines 
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(or) 

14. Find the equation of the sphere which has its centre at the point (-

1,2,3) and touch the plane zx – y + 2z = 6. 

 



15. Using cayley.Hamilton theorem find A-1 if 
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Also verify the theorem. 

(or) 

16. Reduce the equation form 10x2 + 2y2 + 5z2 + 6yz – 10zx – 4xy to 

a canonical form. 

 

17. When n is a positive integer find a reduction formula for 

∫ dxx
nsin  

(or) 

18. Evaluate ∫ ∫
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dydxyx by changing the order of 

integration. 

 

19. Prove that β (m, n) = 
nm

nm

+
, the relation between 

Gamma and Beta functions. 

(or) 

20. Prove that β(m, n) = ∫
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 Hence deduce that β(m, n) = 
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