ELECTRONICS

- A differential amplifier has common-mode gain of 0.02 db and differential-mode gain of 200 db. Its CMMR in db is:
 - (A) 0.02 db
 - (B) 4.80 db
 - (C) 80.0 db
 - (D) 200.0 db
- 2. If the cut-in voltage for silicon diodes D_1 and D_2 used in the circuit shown in Fig.(1) is 0.6 V, the output voltage V_0 for $V_1 = 5$ V and $V_2 = 5$ V is:

Fig. (1)

- (A) 0 V
- (B) 5 V
- (C) 10 V
- (D) 15 V
- 3. Identify the true statement. An emitter follower has :
 - (A) low input impedance and high voltage gain
 - (B) high output impedance and unity current gain
 - (C) low input impedance and unity current gain
 - (D) high input impedance and unity voltage gain

- Bridge rectifiers are preferred because :
 - (A) ripple factor of the bridge rectifier is less than that of centre-tap fullwave rectifier
 - (B) PIV in case of bridge rectifier is half that of a centre-tap full-wave rectifier
 - (C) the regulation in case of bridge rectifiers is higher than that in case of centre-tap full-wave rectifier
 - (D) the rectification efficiency is larger than that in case of centre-tap fullwave rectifier
- 5. In a p-n junction the Zener breakdown is caused by :
 - (A) field ionization
 - (B) impact ionization
 - (C) thermal runaway
 - (D) punchthrough mechanism
- 6. Identify the true statement. In case of avalanche breakdown of a p-n junction :
 - (A) direct band rupture occurs due to high electric field
 - (B) the charge carriers acquire high energies sufficient to produce electronhole pairs by impact ionization
 - (C) electron-hole pairs are generated because of the increase in junction temperature
 - (D) negligible current flows across the junction
- 7. A transistor is said to be in saturation region when :
 - (A) emitter-base junction is forward biased and collector-base junction is reverse biased
 - (B) both emitter-base junction and collector-base junction are reverse biased
 - (C) both emitter-base junction and collector-base junction are forward biased
 - (D) emitter base-junction is reverse biased and collector-base junction is forward biased

	(A)	degenerate semiconductors		
	(B)	non-degenerate semiconductors		
	(C)	compensated semiconductors		
107	(D)	intrinsic semiconductors		
9.	In ca	se of a MOSFET the drain-source voltage at which the drain current		
	becon	nes nearly constant is called :		
	(A)	punchthrough voltage		
	(B)	cut-in voltage		
	(C)	early voltage		
	(D)	pinch-off voltage		
10.	The u	use of a bypass capacitor across emitter resistor in transistor circuits is		
	to:	9		
	(A)	avoid shift in the Q-point		
	(B)	stabilize the circuit against temperature variations		
	(C)	avoid loss of signal gain	1	
	(D)	stabilize the circuit against the variation in B		
11.	For a p-n-p transistor if $\alpha = 0.98$ and $I_{CBO} = 5 \mu A$, then for a base current			
	of 10	$00 \mu A$ the collector current I_C is :		
	(A)	1.50 mA		
	(B)	2.50 mA		
	(C)	3.15 mA		
	(D)	5.15 mA		
12.	The	voltage gain of a source follower employing FET is usually:		
	(A)	slightly less than unity but positive.		
	(B)	equal to unity but negative.		
	(C)	never less than +200.		
85	(D)	slightly greater than unity but negative		
Electi	ronics	g P.T.O.	83	
Electi	ronics	3	P.T.O.	

Semiconductors having Fermi level within the allowed bands are known as :

8.

- 13. Under thermal equilibrium the product of the electron and hole carrier concentrations in a semiconductor is:
 - (A) dependent on the doping concentrations
 - (B) independent on the doping concentrations
 - (C) greater than square of the intrinsic concentrations
 - (D) less than square of the intrinsic concentrations
- 14. The Schottky diode clamping across the collector-base junction of the transistor in case of Schottky-TTL is used:
 - (A) to increase the current gain of the transistor
 - (B) to prevent transistor from junction breakdown
 - (C) to prevent transistor from saturation
 - (D) to prevent transistor from thermal runaway
- 15. According to the De Morgan's theorem :
 - (A) An n-input NAND gate is equivalent to an n-input bubbled AND gate
 - (B) An n-input OR gate is equivalent to an n-input bubbled AND gate
 - (C) OR gate and NOR gate are complement to each other
 - (D) An n-input NAND gate is equivalent to n-input bubbled OR-gate
- 16. The output logic Y of the circuit shown in Fig. (2) is :

Fig. (2)

- (A) ABC
- (B) AB
- (C) AC
- (D) A

- 17. The number of load gates that a logic device can drive reliably is called the :
 - (A) fan-out
 - (B) fan-in
 - (C) standard load
 - (D) current sink
- 18. The potential divider method of biasing in translator amplifiers is used as

it:

- (A) increases the voltage gain of the amplifier
- (B) makes the operating point stable against the variations of β
- (C) reduces the noise of the amplifier
- (D) prevents transistor from thermal run away
- 19. The equivalent resistance between A and B terminals of the circuit shown in Fig. (3) is:

Fig. (3)

- (A) R
- (B) 2R
- (C) $(1 + \sqrt{5})R$
- (D) $(1 + \sqrt{10})R$

- 20. For a step voltage input an integrator produces:
 - (A) a sine wave
 - (B) a square wave
 - (C) a narrow spike
 - (D) a ramp
- 21. For the circuit shown in Fig. (4) the output Vout will be:

Fig. (4)

- (A) -17 V
- (B) -15 V
- (C) -9.6 V
- (D) -6 V
- 22. The resolution of 4-digit 0-10 V DVM is:
 - (A) 1 V
 - (B) 1 mV
 - (C) 1 µV
 - (D) 1 pV

23. For an input voltage $V_{in} = 10 \sin (2000 \ t) \mu V$ the output voltage V_{out} for the circuit shown in Fig. (5) will be:

Fig. (5)

- (A) $-100 \cos (2000 t) \mu V$
- (B) $-100 \sin (2000 t) \mu V$
- (C) $-500 \cos (2000 t) \mu V$
- (D) $-500 \sin (2000 t) \mu V$
- 24. One of the following devices has no negative region in its static I-V characteristics. The device is:
 - (A) Thyristor
 - (B) Tunnel diode
 - (C) Gunn diode
 - (D) Zener diode
- 25. If the data stored at memory locations 0800 and 0801 is $2C_{\rm H}$ and $51_{\rm H}$ respectively, then on execution of the program :

LDA 0800

MOV B,A

LDA 0801

ADD B

STA 0802

the contents of the memory location 0802 will be :

- (A) 7D_u
- (B) 7E_H
- (C) 20_H
- (D) 51_H

P.T.O.

26.	LDA is abyte instruction and belongs toaddressing
	mode group.
	(A) one, direct
	(B) two, register
	(C) three, direct
	(D) two, intermediate
27.	Early voltage is usually determined from the:
0.5	(A) input characteristics of CE transistor
	(B) input characteristics of CB transistor
	(C) output characteristics of CB transistor
	(D) output characteristics of CE transistor
28.	If the current gain α of a transistor is 0.99, the current gain β of the transistor
	will be:
	(A) 49.0
	(B) 50.0
	(C) 69.0
	(D) 99.0
29.	The maximum frequency of oscillation of a Wien bridge oscillator employing
	an Op-Amp is limited by the :
38	(A) slew rate of the operational amplifier
	(B) output offset voltage of the operational amplifier
	(C) output offset current of the operational amplifier
	(D) gain of the amplifier
30.	In case of a phase shift oscillator, each RC circuit produces a phase shift of:
	(A) 30°
	(B) 60°
	(C) 90°
	(D) 180°

e a

	27	E STATE OF THE STA		
31.	In e	very practical oscillator the loop gain is kept :		
	(A)	exactly equal to the unity		
	(B)	slightly less than unity		
	(C)	slightly greater than unity		
	(D)	not less than 10		
32.	Identify the true statement from the following:			
	(A)	The input resistance in a voltage series feedback amp		
		while that in a voltage-shunt feedback amplifier incr		

- lifier decreases eases
- (B) The input resistance both in a voltage-series feedback amplifier and voltage-shunt feedback amplifier decreases
- (C) The input resistance both in a voltage-series feedback amplifier and voltage-shunt feedback amplifier increases
- (D) The input resistance in a voltage-series feedback amplifier increases while that in a voltage-shunt feedback amplifier decreases
- 33. The temperature coefficient of resistance in case of semiconductors is :
 - (A) zero
 - (B) infinity
 - (C) positive
 - (D) negative
- 34. The Fermi energy level in case of intrinsic semiconductors lies:
 - (A) halfway between the conduction and valance bands
 - (B) within the valance band
 - within the conduction band (C)
 - close to the bottom of the conduction band

35.	When	a sinusoidal voltage of frequency 60 Hz is applied across the primary	
	termi	nals of the transformer in case of full-wave rectifier, the lowest frequency	
	alteri	nating component across the load will have the frequency:	
	(A)	30 Hz	
101	(B)	60 Hz	
	(C)	90 Hz	
	(D)	120 Hz	
36.	The	reverse leakage current I _{CBO} :	
	(A)	increases with increase in I _E	
	(B)	decreases with increase in temperature	
	(C)	increases with increase in temperature	
	(D)	decrease with increase in V _{CB}	
37.	In ca	se of RC coupled amplifier the main component which results in decrease	
	in its gain in low frequency range :		
	(A)	is coupling capacitor	
	(B)	are the junction capacitances	
	(C)	is the emitter resistance	
	(D)	is emitter resistance bypass-capacitor	
38.	In case of class-A operation of an amplifier the output current flows for :		
	(A)	full cycle	
×	(B)	less than full cycle but more than half cycle	
	(C)	half cycle	

(D) less than half cycle

- 39. The maximum efficiency of class-B operation will not exceed :
 - (A) 25%
 - (B) 50%
 - (C) 60.5%
 - (D) 78.5%
- 40. The circuit shown in Fig. (6) is:

Fig. (6)

- (A) an integrator
- (B) a logarithmic amplifier
- (C) a differentiator
- (D) an adder
- 41. The Boolean expression for a two input A and B exclusive-OR gate is given

by:

- $(A) \quad f(A, B) = A + B$
- $(B) \quad f(A, B) = AB$
- (C) $f(A, B) = \overline{A}B + A\overline{B}$
- (D) $f(A, B) = \overline{A} + B$
- 42. The Boolean expression A + A will always have logic value :
 - (A) 0
 - (B), A
 - (C) Ā
 - (D) 1

Electronics

- 43. The Boolean expression A + AB is equal to :
 - (A) AB
 - $(B) \quad A + B$
 - (C) $\bar{A}B + A\bar{B}$
 - (D) A
- 44. The output Y in the circuit shown in Fig. (7) is given by :

Fig. (7)

- $(A) \quad A + B$
- (B) AB
- (C) $\bar{A}B + A\bar{B}$
- (D) $(A + \overline{B})(\overline{A} + B)$
- 45. For 50 μA meter movement with a coil resistance of 200 Ω . What shunt resistance is required to extend the range to 250 μA ?
 - (A) 200 Ω
 - (B) 150 Ω
 - (C) 100 Ω
 - (D) 50 Ω

- If m is the modulation index the ratio between the total power in the amplitude 46. modulated wave to the unmodulated carrier power is given by :
 - (A) $m^2/2$
 - $1 + m^2/2$ (B)
 - $1 + m^2$ (C)
 - $(1 + m^2)/2$ (D)
- A carrier wave is simultaneously modulated by two sine waves with modu-47. lation indices of 0.3 and 0.4, the total modulation index is :
 - (A) 1.7
 - 0.7 (B)
 - 0.5 (C)
 - 0.34 (D)
- Identify the true statement from the following. In a superheterodyne receiver: 48.
 - a constant frequency difference is maintained between the local oscil-(A) lator and the RF circuit
 - no local oscillator is used (B)
 - a frequency difference equal to twice the intermediate frequency is main-(C) tained between local oscillator and RF circuit
 - local oscillator frequency is normally double the IF (D)
- Identify the false statement from the following: 49.
 - FM has an infinite number of side bands. (A)
 - In FM the total transmitted power always remains constant with depth (B) of modulation
 - In FM the amplitude of the carrier component does not remain (C) constant
 - In FM with increased depth of modulation the required bandwidth is (D) decreased

35	
50.	The image frequency of a superheterodyne receiver :
	(A) is not rejected by the IF tuned circuit
	(B) is produced within the receiver
	(C) is independent of the frequency to which the receiver is tuned
	(D) is due to the insufficient adjustment of channel receiver
51 .	The carrier wave $V_c = 80 \sin{(2 \times 10^6 t)}$ is amplitude modulated by a modu-
200	lating signal $V_m = 4 \sin (200t)$, the modulation index is:
	(A) 0.01
	(B) 0.05
	(C) 0.25
	(D) 0.50
52.	If δ and f_m represent the frequency deviation and modulating frequency the
	modulation index of FM is given by:
	(A) f_m/δ
	(B) δ/f_m
2	(C) δf_m
	(D) $\delta f_m/2$
53.	In case of frequency modulation :
	(A) the total number of side bands depend on the modulation index
	(B) the carrier frequency cannot disappear
	(C) the amplitude of any side band does not depend on the modulation

(D)

index

the amplitude of any side band depends on the modulation index

54.	In C-programming the while (expression) statement is used to carry out					
	looping operation. The included statements will executed repeatedly as long					
	as the value of the expression is :					

- (A) zero
- (B) one only
- (C) negative
- (D) not zero.
- 55. In C-programming the expression ++k is equivalent to :
 - (A) k=k+1+1
 - (B) k=k-1
 - (C) k=k+1
 - (D) k=k+k
- 56. In C-programming the global variables are the variables defined :
 - (A) inside the function program
 - (B) outside the main program
 - (C) inside the main program
 - (D) in function declaration statement
- 57. Identify the false statement from the following:
 - (A) A pointer is a variable which holds the memory address of another variable.
 - (B) A pointer allows to return structured variables from a function
 - (C) A pointer allows to pass variables, arrays, functions, strings and structures to a function arguments
 - (D) A pointer does not support dynamic allocation and deallocation of memory segments

58. Identify the false statement. In C-p	programming :
--	---------------

- (A) all processor directives begin with the sharp sign #
- (B) the processor directive is terminated by a semicolon
- (C) only one processor directive can occur in a line
- (D) the processor directive may appear at any place in source file
- 59. The electromagnetic wave when travelling through the free space will suffer only one of the following:
 - (A) Reflection
 - (B) Refraction
 - (C) Attenuation
 - (D) Absorption
- 60. The highest frequency that will return to earth by a given atmospheric layer after being beamed straight up at it is known its:
 - (A) critical frequency
 - (B) maximum useable frequency
 - (C) window
 - (D) resonant frequency