[This question paper contains 4 printed pages]

Your, Roll No

5807 J

B.Sc. (Hons.)/III

BIO-CHEMISTRY—Paper XII

(Molecular Biology-II - Gene Expression and Recombinant DNA Technology)

(Admissions of 2000 and onwards)

Time 3 Hours

Maximum Marks 60

(Write your Roll No on the top immediately on receipt of this question paper)

Attempt Five questions in all, including

Q No 1 which is compulsory

- 1 (a) Study the following statements and justify whether

 True or False $1\frac{1}{2} \times 6 = 9$
 - In λ phage both DNA strands are antisense strands for different sets of genes
 - (11) Patients of SLE (systemic lupus erythematosus) have impaired splicing
 - (iii) Use of cordycepin as an inhibitor of transcription proves that RNA is synthesised in a $3' \rightarrow 5'$ direction

[PTO

(2) 5807

- (iv) Translational accuracy has to be better than transcriptional fidelity
- (v) The major criteria to be used while selecting a Restriction enzyme is whether it is a blunt or staggered cutter
- (vi) RNA synthesis whether in procaryotes or encaryotes is entirely processive
- (b) Indicate the role of the following enzymes

 $1 \times 4 = 4$

- (1) t-RNA nucleotidyl transferase
- (11) Polynucleotide phosphoryllase
- (111) 50s ribosomal sub-unit
- (iv) Alkaline phosphatase
- (c) Each of the following statements is a description of a phenomenon observed in Gene expression Indicate the phenomenon in each case $1\times3=3$
 - (i) The rate of r-RNA synthesis is proportional to the rate of ribosomal protein synthesis
 - (11) His deletion mutants increasing his operon expression
 - (m) In the presence of lactose and glucose, β galactosidase is poorly expressed

2 Explain

(1) In both procaryotes and encaryotes selection of the

		initiating amino acid in translation is not only by
		codon-anticodon based
	(u)	What is the wobble hypothesis and what role does
		it play in translation?
	(m)	Strong promoters are not always good for
		recombinant gene expression
3	(1)	With the aid of a schematic diagram indicate how
		a c-DNA library is made. In what ways is it better
		than a genomic DNA library? 5 + 5
	(u)	What is the mechanism behind blue-white selection
		of recombinants?
4	Give	e reasons to explain the following
	(1)	Alternate splicing gives rise to different protein
		with the same N-terminus
	(n)	Selenocysteine has no designated codon but is
		considered the 21st proteinaceous amino acid
	(m)	RF-2 is a structural mimic of t-RNA
	(iv)	Puromycin inhibits procaryotic and encaryotic
		translation
5	(1)	Transcriptional initiation in encaryotes is far more
		complex than in procaryotes Briefly with a diagram
		indicate initiation at a protein encoding gene and
		highlight three reasons for the complexity over
		procaryotic genes 4 + ;
	(n)	m-RNA transcripts in encaryotes are poly adenylated

(4)	5807
١	, 1	,	990

		Why? How do histone genes get translated inspite
		of no poly adenylation 4
6	(1)	Explain two different mechanisms of encaryotic
		translational control $3\times2 = 6$
	(n)	Why is translational control rare in procaryotes?
		Indicate any one translational control observed in
		procaryotes 1+2
	(m)	In the expression of the lac operon, the ratio of the
		proteins β-galactosidase lactose permease
		transacetylase is 10 5:2 Why?
7	(1)	How do aminoacyl t-RNA synthetases recognise their
		cognate t-RNAs Indicate if these enzymes can proof-
		read with an example to support your claim 5+3
	(n)	Why are cell free systems derived from reticulocytes
		used in translation studies ? If in such a study
		involving translation of m-RNA of globin a brief
		pulse of ³ H labelled leucine was given followed by
		a chase with unlabelled leucine, what would be the
		distribution of radioactivity in the completed
	***	haemoglobin chains?
8		te short notes on the following
	(1)	λ-switch 4
	(n)	DNA-binding protein motifs
	(m)	RNA interference 4