MCA-758

MCA-08

M.C.A. DEGREE EXAMINATION – JUNE 2010.

First Year

COMPUTER ORIENTED NUMERICAL METHODS

Time: 3 hours Maximum marks: 75

PART A —
$$(5 \times 5 = 25 \text{ marks})$$

Answer any FIVE questions.

- 1. Write about numbers and their accuracy.
- 2. Describe the method of false position.
- 3. Find, by Newton's method, the root of the equation $e^x = 4x$, which is approximately 2, correct to three decimal places.
- 4. Solve by Gauss-elimination method:

$$2x + y + 4z = 12$$

$$8x - 3y + 2z = 20$$

$$4x + 11y - z = 33$$
.

- 5. Describe the Gauss-Jacobi method.
- 6. Given the data:

$$x:$$
 0 1 2 5 $f(x):$ 2 3 12 147

Find the cubic function of x.

7. Solve the equation $\frac{dy}{dx} = 1 - y$ with the initial condition x = 0, y = 0, using Euler's algorithm find the solution at x = 0.1 and 0.2.

PART B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer any FIVE questions.

- 8. Find the root of equation $x^3 4x 9 = 0$ correct to three decimal places by using the bisection method.
- 9. Show that the equation $x^3 3x + 1 = 0$ has a root between 1 and 2. Calculate it to three decimal places using Horner's method.

2

10. Solve by Gauss-Jordon method:

$$5x - 2y + 3z = 18$$

$$x + 7y - 3z = -22$$

$$2x - y + 6z = 22.$$

11. Solve by Gauss-Seidel method of iteration:

$$27x + 6y - z = 85$$
$$6x + 15y + 2z = 72$$
$$x + y + 54z = 110$$

12. Compute f(0.9) by Newton-Gregory backward difference interpolation formula from the data:

x: 0 0.2 0.4 0.6 0.8 1.0 f(x): 1 1.16 3.56 13.96 41.96 101

- 13. Dividing the range into 10 equal parts, find the approximate value of $\int_{0}^{\pi} \sin x \, dx$ by
 - (a) Trapezoidal role and
 - (b) Simpson's 1/3 rule.
- 14. Apply the fourth order Runge-Kutta method, to find an approximate value of y when x = 0.2 and h = 0.1, given that y' = x + y, y(0) = 1.