Syllabus for the M. Math. Selection Test-2008 TEST CODE MM

Open sets, closed sets and compact sets in \mathbf{R}^{n};

Convergence and divergence of sequences and series;

Continuity, uniform continuity, differentiability, mean-value theorem;

Pointwise and uniform convergence of sequences and series of functions, Taylor expansions, power series;

Integral calculus of one variable : Riemann integration, Fundamental theorem of calculus, Multiple integrals, change of variables;

Directional and total derivatives, Jacobians, chain rule;

Maxima and minima of functions of one and several variables;

Elementary topological notions for metric spaces : compactnes, connectedness, completeness;

Elements of ordinary linear differential equations.

Equivalence relations and partitions;

Primes and divisibility;

Groups : subgroups, products, quotients, homomorphisms, Lagrange's theorem, Sylow's theorems;

Commutative rings : Ideals, prime and maximal ideals, quotients, congruence arithmetic, integral domains, field of fractions, principal ideal domains, unique factorization domains, polynomial rings;

Fields : field extensions, roots and factorization of polynomials, finite fields;

Vector spaces : subspaces, basis, dimension, direct sum, quotient spaces;

Matrices : systems of linear equations, determinants, eigenvalues and eigenvectors, diagonalization, triangular forms;

Linear transformations and their representation as matrices, kernel and image, rank;

Inner product spaces, orthogonality and quadratic forms, conics and quadrics.

Sample Questions for the Selection Test

Notation : $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}$ and \mathbb{N} denote the set of real numbers, complex numbers, rational numbers, integers and natural numbers respectively.
(1) Let $A \subseteq \mathbb{R}^{n}$ and $f: A \rightarrow \mathbb{R}^{m}$ be a uniformly continuous function. If $\left\{x_{n}\right\}_{n \geq 1} \subseteq A$ is a Cauchy sequence then show that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists.
(2) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\max \{|x|,|y|\} .
$$

Show that f is a uniformly continuous function.
(3) Let $f:[0,1] \rightarrow[0,1]$ be a function satisfying $|x-y|=\mid f(x)-$ $f(y) \mid$ for all $x, y \in[0,1]$. Show that f is surjective.
(4) A map $f: \mathbb{R} \rightarrow \mathbb{R}$ is called open if $f(A)$ is open for every open subset A of \mathbb{R}. Show that every continuous open map of \mathbb{R} into itself is monotonic.
(5) Let A be a bounded subset of \mathbb{R}. Suppose that for each $x \in \mathbb{R}$, there is an $\epsilon>0$, such that $(x-\epsilon, x+\epsilon) \cap A$ is countable. Show that A is countable.
(6) Let $S=\left\{\left(x_{1}, x_{2}, \ldots x_{n}\right) \in \mathbb{R}^{n}: \sum\left|x_{i}\right|^{2}=1\right\}$. Let

$$
A=\left\{\left(y_{1}, y_{2}, \ldots y_{n}\right) \in \mathbb{R}^{n}: \sum \frac{y_{i}}{i}=0\right\}
$$

Show that the set $S+A=\{x+y: x \in S, y \in A\}$ is a closed subset of \mathbb{R}^{n}.
(7) Let f be a continuous function on $[0,1]$. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x
$$

(8) Let f be a differentiable function with bounded derivative on $[0,1]$. Let P be a partition $0=a_{0}<a_{1}<\cdots<a_{n}=1$ and $U(f, P)$ the upper Riemannian sum of f with respect to P.

Show that

$$
\left|\int_{0}^{1} f(x) d x-U(f, P)\right| \leq \sup _{0<x<1}\left|f^{\prime}(x)\right|
$$

(9) Let $f:(0,1) \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational } \\ \frac{1}{n} & \text { if } x=\frac{m}{n} \text { with } m, n \text { relatively prime }\end{cases}
$$

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(x)= \begin{cases}0 & \text { if } x \leq 0 \text { or } x>\frac{1}{2} \\ 1 & \text { otherwise }\end{cases}
$$

Show that $g \circ f$ is not Riemann integrable.
(10) Let f be a continuous and nonnegative function on $[0, \infty)$. Let F be a function on $[0, \infty)$ satisfying:
(i) $F(0)=0$,
(ii) $\lim _{x \rightarrow \infty} F(x)=a>0$,
(iii) $F^{\prime}(x)=f(x)$ for every $x \in[0, \infty)$.

Show that

$$
\int_{0}^{\infty} x f(x) d x=\int_{0}^{\infty}(a-F(y)) d y .
$$

(You may assume that interchange of order of integration is permissible.)
(11) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function with $f(0)=0$. Define

$$
f_{n}(x)=f(n x), \text { for } x \in \mathbb{R} \text { and } n=1,2,3, \ldots
$$

Suppose that $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$, that is, for every $\varepsilon>0$ there exists a $\delta>0$ such that whenever $x, y \in[0,1]$, $|x-y|<\delta$, we have $\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon$ for all n. Show that $f(x)=0$ for all $x \in[0,1]$.
(12) Find the most general curve in \mathbb{R}^{2} whose normal at each point passes through $(0,0)$. Find the particular curve through $(2,3)$.
(13) Find the maximum value of the function

$$
f(x, y, z)=s(s-x)(s-y)(s-z),
$$

where $s>0$ is a given constant under the condition

$$
x+y+z-2 s=0
$$

and where x, y, z are restricted by the inequalities

$$
\begin{gathered}
x \geq 0, y \geq 0, z \geq 0 \\
x+y \geq z, x+z \geq y, y+z \geq x
\end{gathered}
$$

(14) For $x, y \in \mathbb{R}$, define

$$
d(x, y)=\left|\tan ^{-1} x-\tan ^{-1} y\right|,
$$

where for any real number $t, \tan ^{-1} t$ is the unique $\theta,-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, such that $\tan \theta=t$. Show the following:
(i) d is a metric on \mathbb{R}.
(ii) d is not a complete metric on \mathbb{R}.
(15) Let (X, d) be a compact metric space and $f: X \rightarrow X$ satisfy $d(f(x), f(y))=d(x, y)$ for all $x, y \in X$. Show that f is onto.
(16) Let ω be an n-th root of unity such that $\omega^{m} \neq 1$ for any positive integer $m<n$. Show that $(1-\omega) \ldots\left(1-\omega^{n-1}\right)=n$ [Hint : Consider the polynomial $z^{n}-1$.
Hence deduce the following : if $A_{1}, A_{2}, \ldots, A_{n}$ are the vertices of a regular n-gon inscribed in a unit circle, prove that

$$
l\left(A_{1} A_{2}\right) l\left(A_{1} A_{3}\right) \ldots l\left(A_{1} A_{n}\right)=n
$$

where $l(A B)$ denotes the length of a line segment $A B$.
(17) Find all homomorphisms of the group \mathbb{Q} to the group \mathbb{Z} (both are groups under addition).
(18) Let G be a nonabelian group of order 55 . How many subgroups of order 11 does it have? Using this information or otherwise compute the number of subgroups of order 5 .
(19) Let R be a commutative ring with 1 . Let $R^{*}=\{r \in R$: there exists $s \in \rrbracket$ R with $r s=s r=1\}$ denote the group of units of R.
(a) Let $k[x]$ be the polynomial ring in one variable x over the
field k. What is $k[x]^{*}$?
(b) Let $A=\frac{\mathbb{Z}}{4 \mathbb{Z}}$, where $\frac{\mathbb{Z}}{4 \mathbb{Z}}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ are the integeres modulo 4. Let $A[x]$ be the polynomial ring in one variable x over the ring A. Give an example of an element of $A[x]^{*}$ which is not $\overline{1}$ or $\overline{3}$.
(c) Compute $A[x]^{*}$ with $A=\frac{\mathbb{Z}}{4 \mathbb{Z}}$. (Hint: you may use the natural ring homomorphism $\frac{\mathbb{Z}}{4 \mathbb{Z}}[x] \rightarrow \frac{\mathbb{Z}}{2 \mathbb{Z}}[x]$, and part (a) for the field $\left.k=\frac{\mathbb{Z}}{2 \mathbb{Z}}\right)$.
(20) Let $n \in \mathbb{N}$ and p be a prime number. Let $f(x)=a_{0}+a_{1} x+$ $a_{2} x^{2}+\cdots+a_{\ell} x^{\ell}$ and $g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{m} x^{m}$, where $a_{i}, b_{j} \in \mathbb{Z} / p^{n} \mathbb{Z}$, for all $0 \leq i \leq \ell, 0 \leq j \leq m$. Suppose that $f g=0$. Prove that $a_{i} b_{j}=0$ for all $0 \leq i \leq \ell, 0 \leq j \leq m$.
(21) Let R be the ring of all continuous real-valued functions on \mathbf{R} where the addition and the multiplication in R are defined as

$$
(f+g)(x)=f(x)+g(x),(f \cdot g)(x)=f(x) g(x)
$$

Let $f_{1}, \cdots, f_{n} \in R$.
(i) If the f_{i} 's have a common zero, show that the ideal generated by them is a proper ideal.
(ii) If the f_{i} 's do not have a common zero, prove that the constant function 1 is in the ideal generated by them.
(22) Let $a_{1}, a_{2}, \ldots, a_{n}$ be n distinct odd integers. Prove that the polynomial $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)+1$ is irreducible in $\mathbb{Z}[x]$.
(23) Show that the fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are isomorphic as vector spaces over \mathbb{Q} but not isomorphic as fields.
(24) Suppose $f \in F[x]$ be an irreducible polynomial of degree 5 , where F is a field. Let K be a quadratic field extension of F, that is, $[K: F]=2$. Prove that f remains irreducible over K.
(25) Let $k[x, y]$ be the polynomial ring in two variables x and y over a field k. Prove that any ideal of the form $I=(x-a, y-b)$ for $a, b \in k$ is a maximal ideal of this ring. What is the vector space dimension (over k) of the quotient space $k[x, y] / I$?
(26) Let A be a $n \times n$ symmetric matrix of rank 1 over the complex numbers \mathbb{C}. Show that $A=\alpha \boldsymbol{u} \boldsymbol{u}^{t}$ for some non-zero scalar $\alpha \in \mathbb{C}$ and a non-zero vector $\boldsymbol{u} \in \mathbb{C}^{n}$ (where \boldsymbol{u}^{t} is the transpose of \boldsymbol{u}).
(27) Let A be any 2×2 matrix over \mathbb{C} and let $f(x)=a_{0}+a_{1} x+$ $a_{2} x^{2}+\cdots+a_{n} x^{n}$ be any polynomial over \mathbb{C}. Show that $f(A)$ is a matrix which can be written as $c_{0} I+c_{1} A$ for some $c_{0}, c_{1} \in \mathbb{C}$, where I is the identity matrix.
(28) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Show that there is a line L through origin such that $T(L)=L$
(29) Consider an $n \times n$ matrix $A=\left(a_{i j}\right)$ with $a_{12}=1, a_{i j}=0$ for all $(i, j) \neq(1,2)$. Prove that there is no invertible matrix P such that $P A P^{-1}$ is a diagonal matrix.
(30) Let $B=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$. Find all invariant subspaces of B (a subspace $\mathcal{M} \subset \mathbb{C}^{3}$ is said to be invariant for B if $B x \in \mathcal{M}$ for all $x \in \mathcal{M})$.

Model question Paper

Time: 2 hours
a): Attempt any three questions from each group.
b) : Each question carries equal weightage.

Group A (any three)

(1) Suppose that f is a real-valued continuous function defined on \mathbb{R} and $f(x+1)=f(x)$ for all $x \in \mathbb{R}$.
(a) Show that f is bounded above and below and achieves its maximum and minimum.
(b) Show that f is uniformly continuous on \mathbb{R}.
(c) Prove that there exists $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$.
(2) Let $f_{n}: \mathbb{R} \mathbb{R}$ be a differentiable function for each $n \geq 1$, with $\left|f_{n}^{\prime}(x)\right| \leq 1$ for all n and x. Assume also that $\lim _{n \rightarrow \infty} f_{n}(x)=$ $g(x)$ exists for all $x \in \mathbb{R}$. Prove that $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
(3) Suppose that $\left\{a_{k}\right\}_{k=1}^{\infty}$ is a bounded sequence of nonnegative real numbers. Show that $\frac{1}{n} \sum_{k=1}^{n} a_{k} \rightarrow 0$ as $n \rightarrow \infty$ if and only if $\frac{1}{n} \sum_{k=1}^{n} a_{k}^{2} \rightarrow 0$ as $n \rightarrow \infty$.
(4) Consider the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=0
$$

Suppose that $y_{1}(x)$ and $y_{2}(x)$ are any two linearly independent solutions of this differential equation. Suppose also that there exist $x_{1}, x_{2} \in \mathbb{R}$ such that $x_{1}<x_{2}$ and $y_{1}\left(x_{1}\right)=0=y_{1}\left(x_{2}\right)$. Show that there is x_{3} in \mathbb{R} such that $x_{1}<x_{3}<x_{2}$ with $y_{2}\left(x_{3}\right)=$ 0 .
(5) Let (X, d) be a metric space. For a closed subset A of X, define the function d_{A} by

$$
d_{A}(x):=\inf \{d(x, y): y \in A\} .
$$

Prove that
(i) $\left|d_{A}\left(x_{1}\right)-d_{A}\left(x_{2}\right)\right| \leq d\left(x_{1}, x_{2}\right)$ for all $x_{1}, x_{2} \in X$.
(ii) $d_{A}(x)=0$ if and only if $x \in A$.

Group B (ANy Three)

(1) For a prime $p, \mathbb{F}_{p}(=\mathbb{Z} / p \mathbb{Z})$ denotes the field of integers modulo p. Determine all primes p for which the system of equations

$$
\begin{aligned}
& 8 x+3 y=10 \\
& 2 x+6 y=-1
\end{aligned}
$$

(i) has no solution in \mathbb{F}_{p};
(ii) has exactly one solution in \mathbb{F}_{p};
(iii) has more than one solution in \mathbb{F}_{p}. In case (iii), how many solutions does the system have in \mathbb{F}_{p} ?
(2) Let $a, b \in \mathbb{Z}$ and let d be the G.C.D. of a and b. Let D denote the subring of \mathbb{Q} defined by

$$
D=\left\{\left.\frac{r}{d^{k}} \in \mathbb{Q} \right\rvert\, r \in \mathbb{Z}, k \in \mathbb{N} \cup\{0\}\right\}
$$

Show that $\left(a^{m}, b^{n}\right) D=D$ for all $m, n \in \mathbb{N}$; where $\left(a^{m}, b^{n}\right) D$ denotes the ideal $\left\{a^{m} \alpha+b^{n} \beta \mid \alpha, \beta \in D\right\}$.
(3) A field L is called an algebraic extension of a subfield k if, for each $\alpha \in L$, there exists a nonzero polynomial $f(x) \in k[x]$ such that $f(\alpha)=0$.

Suppose that k is a field and L is an algebraic extension of k. Show that any subring R of L, such that $k \subseteq R \subseteq L$, is a field.
(4) Let A be an $n \times n$ real matrix such that $A^{2}=I$, but $A \neq \pm I$ (where I denotes the $n \times n$-identity matrix). Show that (i) A has two eigenvalues λ_{1}, λ_{2}.
(ii) Every element $x \in \mathbb{R}^{n}$ can be expressed uniquely as $x_{1}+x_{2}$, where $A x_{1}=\lambda_{1} x_{1}$ and $A x_{2}=\lambda_{2} x_{2}$.
(5) Let N be a normal subgroup of a finite group G such that the index $[G: N]$ is relatively prime to $|N|$, where $|N|$ denotes the order of N. Show that there is no other subgroup of G of order $|N|$.

