

MCA (Revised)

Term-End Examination

December, 2007

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time: 2 hours Maximum Marks: 50

Note: Question no. 1 is **compulsory**. Attempt any **three** questions from the rest.

- 1. (a) Solve $a_{n+1}^2 = 10 \ a_n^2$ where $a_n > 0$ and $a_0 = 5$. Also find a_6 .
 - (b) Find the solution of $a_{n+1} = (n+1) a_n$. Given $a_1 = 1$. Solve it for $n \ge 2$.
 - (c) Solve $T_n = 3T_{n-1} + 2$ using generating function. Given $T_0 = 1$. Solve for $n \ge 2$.
 - (d) Draw any four possible spanning trees of following graph:

(e) Use Euler's formula to show that the following graph is planar.

3

3

(f) Show that following graph is bipartite.

- 2. (a) Draw complete graphs with number of vertices as2, 3, 4, 5. Also write the relation between number of vertices and number of edges.
 - (b) Describe Konigsberg's 7 bridges problem and Euler's solution to it.
 - (c) Draw a graph with 6 vertices which contains both Eulerian cycle and Hamiltonian cycle and both cycles are the same.
- 3. (a) What is the chromatic number of
 - (i) Bipartite graph?
 - (ii) Complete graph with n vertices?

Explain your answer w.r.t. vertex coloring.

(b) Find edge chromatic number for the graph: 3

4

(c) Find a cut set and fundamental cut sets in the following graph w.r.t. any spanning tree.

4. (a) Solve the following recurrence relation:

$$a_n = a_{n-1} + a_{n+2}$$

Given $a_1 = 2$ and $a_2 = 3$. Solve it for $n \ge 3$.

(b) Solve
$$a_n - a_{n-1} = n - 1$$
 for $n \ge 1$. Given $a_0 = 5$.

5. (a) Identify the following relation as homogeneous, non-homogeneous and also find their order.

(i)
$$a_r - 4a_{r-1} + 4a_{r-2} = (r + 1) 2^r$$

(ii)
$$a_r - 5a_{r-1} + 6a_{r-2} + 7a_{r-3} = 0$$

(iii)
$$a_r = \sin a_{n-1} + \cos a_{n-2}$$

- (b) Write a short note on Tower of Hanoi Problem. How can it be solved using recursion ? 4
- (c) Solve $a_r 7a_{r-1} + 10a_{r-2} = 0$, given $a_0 = 0$ and $a_1 = 3$.