Diplete - ET (OLD SCHEME)

	Д	UN	\mathbf{E}	20	1	0
--	---	----	--------------	----	---	---

Code: DE05

Subject: ELECTRICAL ENGINEERING

Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1		ose the correct or the best alternative in 0)	the following:	(2×		
	a. Kirchoff's current law is applicable only to					
		(A) closed loops in a network(C) electronic circuits	(B) junctions in a r(D) electric circuits			
	b. A capacitor-start capacitor-run induction motor is basically a motor.					
		(A) two phase(C) commutator	(B) ac series(D) synchronous			
	c.	The dynamic impedance of an R-L ar	d C parallel circuit at res	onance is		
		(A) C/LR (C) LC/R	(B) L/CR (D) R/LC			
	d.	. The power factor of an a.c. circuit is equal to				
		(A) cosine of the phase angle	(B) sine of the phase a	ingle		

	(C) unity for a resistive circuit	e circuit	(D) unity	for a	reactive
e.	If the line current in a del will be equal to	ta connected sys	stem is I_L , th	en phas	e current
	(A) I_L (C) $\sqrt{3}/I_L$	(B) I ₁ (D) I ₁			
f.	Fleming's left hand rule is	applicable to _			
	(A) DC generators(C) Alternator	,	B) DC motor D) Transform		
g.	A three point starter is considered suitable for dc motors.				s.
	(A) series(C) compound	(B) s (D) s	hunt hunt as well	as comp	ound
h.	n. The two windings of a transformer are				
	(A) conductively linked	linked		(B) inc	ductively
	(C) not linked at all	(D)	electrically l	linked	
i.	The efficiency of a sing conditions is	le-phase transfo	rmer under	open ci	rcuit-test
	(A) 100%	(B) 0.	.00%		
	(C) 70.7%	(D) 5	7.7%		
j.	The slip of an induction rotate by blocking the			-	
	(A) 100% (C) 3%	(B) 0° (D) 5°			

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

- Q.2 a. Define the following circuit elements: (6)
 - (i) Resistance.
 - (ii) Capacitance.
 - (iii) Inductance.
 - b. Derive the value of the equivalent resistance when a number of resistances are connected in series. (4)
 - c. In the single loop circuit of the fig.1 given below, find the current I. (6)

- Q.3 a. A circuit consists of a pure resistance of 50Ω and is connected across ac supply $v = 250\sin 314t$. Calculate current in the resistance power consumed by the resistance. Also write the expression for instantaneous value of the current. (8)
 - b. A pure capacitive circuit offers 31.4 \(\Omega\) capacitive reactance at 25 Hz. Calculate how much current does the circuit draw if its terminals are connected to 230V 50Hz supply? (8)

Q.4	a. Explain the construction and working principles motor. (8)	ciple of	a DC
	b. A shunt motor takes a current of 40 A from 230 V s speed of 1100rpm. Find the torque developed by t armature and the shunt field resistances are Ω respectively.	he armat	ure if the
Q.5	a. Draw and explain the equivalent circuit of a stransformer. (8)	single ph	ase ideal
	 b. A 500kVA transformer has 95% efficiency at full lo of full load both at unity power factor. (i) Separate out the transformer losses. (ii) Determine the transformer efficiency at 75% power factor. (8) 		
Q.6	 a. Explain split – phase and shaded pole single phase n diagrams. (8)	notors wit	th suitable
	b. The full load speed of a 3- phase, 230V 4-pole, 50 Hz 1445 rpm. Determine the synchronous speed, frequency. (8)		
Q.7	a. Write a note biofuels.	(8)	on)
	 b. Give two applications of Shaded pole motor, DC series motors, and Capac motors. (8) 		otors, DC start
Q.8	B a. Explain a PV cell with diagram. (8)	a	suitable
	b. A power station has a maximum demand of 15000kV factor is 50% and capacity factor is 40%. Determine to of the plant. (8)		

Q.9 Write notes on:

(i) Application of DC series motors.

(ii) Power factor and its improvement. (8+8)