SUMMER 2005 FUNDAMENTALS OF DESIGN AND MANUFACTURING

Time: Three hours Maximum marks: 100

Answer FIVE questions, taking ANY TWO from Group A,

ANY TWO from Group B and ALL from Group C.

All parts of a question (a, b, etc) should be answered at one place.

Answer should be brief and to-the-point and be supplemented with neat sketches. Unnecessary long answers may result in loss of marks.

> Any missing data or wrong data may be assumed suitably Figures on right-hand side margin indicate full marks.

Group A			
1. (a) Discuss the stages in engineering design process with the help of example.(b) Differentiate between standardization and specification giving appropriate examples. H are 'preferred numbers' useful in standardization? Explain with the help of a suitable	6 low		
example.	8		
(c) Explain in brief:	6		
(i) Robust design			
(ii) Role of brain storming in design idea generation.			
2. (a) What is the role and importance of aesthetics in design? What, are the important aesth	etic		
design requirements? Discuss.	6		
(b) In a system there are four components in parallel followed by three components in ser The components in parallel have a reliability of 0.7 each and those in series have a reliability each. Determine the reliability of entire system. Define the terms:			
(i) Reliability			
(jj) Mean time to failure, and	8		
(jji) Mean time between failure.	0		
(c) Write short notes on :	6		
(i) Design communication(ii) Tools of information technology.			
(ii) Tools of information technology.			
3. (a) Explain, with diagram, a process for the production of seamless tubes and pipes.(b) Define Shrinkage and Porosity in castings. How can one tell whether cavities in casting due to porosity or shrinkage?	6 gs are		
How are dissolved gases removed from castings? List four casting defects.	8		
(c) What checks are recommended for ensuring design's clarity, simplicity, modularity and	1		
safety? Explain. What is design for maintenance?	6		
4. (a) What are the major classifications of basic manufacturing processes? Highlight the			
characteristics of each and its specific applications (at least two).	6 6		
(b) How would you give the specifications for a (i) lathe machine, (ii) milling machine? (c) Explain Investment Casting Process with the help of neat diagram(s). What are its	0		
applications?	8		
Group B	G		
5. (a) What is Computer Aided Process Planning? How is it superior to manual process plann	ing?		
Explain.	6		
(b) On what basis parts are grouped into families in Group Technology? Discuss citing examples.			
What are the benefits of GT over the conventional setup?	6		
	0		

(c) What are the differences between conventional and non-conventional machining processes?

List three finishing operations commonly used in manufacturing? Why are these operations necessary? Explain. 3 6. (a) What is an FMS? What are its components? Why do FMS require major capital expenditure? And why is an FMS capable of producing a wide range of lot sizes? 6 (b) With the help of schematic illustration, describe the principle of operation of EDM process. (c) Explain the tool-work interaction process and mechanism of chip formation. Represent the interaction with the diagram. 7. (a) Define modelling and simulation. 'Simulation is a type of modelling'. Justify giving an example. (b) Explain (i) Robots and (ii) Automated Storage and Retrieval Systems (AS/RS) vs material handling systems. Highlight their components, working and applications. (c) What is design for manufacturability? How can it be realised in practice? Explain with an example. 8. (a) Schematically represent the surface grinding process. What are the components of a surface grinding machine? List some applications of surface grinding. (b) Describe the basic fusion welding process. Explain the process details of submerged arc welding. 6 (c) Explain the following in brief: 8 (i) Design for economic manufacturing (ii) Basic tools of integration (iiil Information Technology and its element. Group C 9. (A) For each question, select the correct answer out of the alternatives provided: 1 x 12 (i) Which one of the following is not a function of a riser? (a) to help the flow of metal towards the mould cavity (b) to provide escape to hot gases (c) to feed the metal to the casting as it shrinks during solidification (d) to help streamline the flow of metal into runner (ii) The required cutting speed in meter/min in machining a workpiece with a diameter of 100 mm and a speed of 500 rpm will be (a) 628 (b) 262 (c) 157 (d) 37.7 (iii) Quick return mechanism is used in (a) slotter (b) broach (c) milling (d) lathe (iy) The collapsible tooth-paste tubes are -produced by (a) impact extrusion (b) direct extrusion (c) indirect extrusion (d) tube extrusion (v) Aluminium oxide abrasive is used for grinding (a) gray cast iron (b) high speed steels

(c) cemented carbides

- . (d) ceramic materials
- (vi) Which of 'the following materials is used as the electric fluid in electro-discharge machining?
 - (a) Kerosene
 - (b) NaCI
 - (c) NaOH
 - (d) NaN03
- (vii) Wax pattern is used in
 - (a) die casting
 - (b) shell moulding
 - (c) investment casting
 - (d) plaster moulds
- (viii) The material used for coating the electrode is called
 - (a) flux
 - (b) slag
 - (c) deoxidiser
 - (d) binder
- (ix) Casting is a preferred process for parts having
 - (a) a few details
 - (b) many details
 - (c) non-symmetrical shape
 - (d) none of the above
 - (x) Size of shaper is specified by
 - (a) size of table
 - (b) h.p. of motor
 - (c) ratio of forward to return stroke
 - (d) length of stroke
 - (xi) A standard ground drill has a point angle of
 - (a) 90°
 - (b) 100°
 - (c) 118°
 - (d) 120°
- (xii) When the grains of a grinding wheel become dull, then it must be
 - (a) replaced
 - (b) trued
 - (c) dressed
 - (d) treated
 - (B) Write briefly about the following, giving an example wherever applicable: 2x 4
 - (i) Design for recyclability
 - (jj) Ergonomics
 - (jji) Automated Guided Vehicles (AGVs)
 - (iv) System concept.

WINTER 2005

FUNDAMENTALS OF DESIGN AND MANUFACTURING

Answer FIVE questions, taking ANY TWO *from* Group A, ANY TWO *from* Group *B and ALL from* Group C.

Group A

	Group A
1.	(a) Explain 'Design Process' .Illustrate the step followed with the help of a figure. Also explain the flow of work during the design process. $2+2+4$
	(b) Explain the role of 'need' in design. How the needs for a particular product design process
	analysed?
	(c) Describe the role of standardisation in the complex products. How the specifications help
	the customers? $3+3$
2.	(a) What do you understand by 'morphology of design"? Discuss the phases of feasibility study,
	preliminary design and detailed design. 3+5
	(b) Explain the term 'Design for manufacturability'. State the guidelines to implement it. 4+2
	(c) Describe the terms 'economic feasibility', 'recyclablity' and 'evaluation of design'. $2+2+2$
3.	(a) What do you understand by 'reliability' and why it is considered? What are three categories
٥.	of failures? Illustrate graphically number of failures vs. time. $2+2+2$
	(b) How will you check the design for clarity, simplicity and safety? Also explain how design
	is organised and communicated. 4+4
	(c) Give the classification of manufacturing processes. Name the commonly used casting
	processes. With the help of a figure explain investment casting. $1 + 1+4$
4.	(a) Why should we do hot working of metals? Enumerate the advantages and disadvantages of
	hot working. Describe three high mill. $1\frac{1}{2} + 2\frac{1}{2} + 4$
	(b)Explain 'extrusion' and 'drawing' processes. 3 + 3
	(c)Describe 'punching' and 'blanking' operations with the help of figures. 3+3 Group B
5.	(a) How do you define the cutting ability of a cutting tool? Give the classification of cutting
	tools. How will you select the materials of a cutting tool? $2\frac{1}{2} + 2\frac{1}{2} + 3$
	(b) Classify the machining processes. Name the operations which can be performed on a lathe
	machine. Describe the process to carry out the turning operation on the lathe machine.
	2+2+4
	(c) Differentiate between the shaper and planer. Explain what process takes place during the
6	return stroke of a shaping machine. 2+2 (a) Describe the available of large yielding! Explain the shielded are yielding and how does
6.	(a) Describe the working principle of 'arc welding'. Explain the shielded arc welding and how does
	it save the weldment from oxidation and absorption of nitrogen. What precautions need to be observed in arc welding? $2+4+2$
	(b) Enumerate the advantages of unconventional machining methods. Describe the working of
	electro-discharge machining with the help of a figure. 3 + 5
	(c) Define information. Enumerate the facts about information. How will you build up
	information system? $1+1+2$
7.	(a) What do you understand by 'Group Technology'? Enumerate the advantages and
	disadvantages of group technology. 3+5
	(b)Discuss the use of classification system of group technology. Also discuss the application of
	cluster analysis. 3+3
	(c) Explain 'simulation' and 'database management system'.
8.	(a) Enumerate and describe the important points to be considered at the time of design for easier
	machining of a component. 8 (h) Write pates on the following:
	(b) Write notes on the following: 8
	(i) Controllers (ii) Sensors
	(iii) Robots
	(m) Kooos

- (iv) Automated guided wheels,
- (c)(i) How will you consider the economic aspects for manufacturing during design?
 - (ii) Describe computed aided process planning.

2

9. (A) Explain the following in brief:

2x6

- (i) Brainstorming
- (ii) Forging
- (iii) Design for assembly
- (iv) Robust design
- (v) Design for shipping
- (vi) Safety in design.
- (B) Select the correct answers out of the alternative choices of the following:

1x8

- (i) Steel and cast iron pipes are casted by
 - (a) die casting
 - (b) continuous casting
 - (c) centrifugal casting
 - (d) investment casting
- (ii) Facing sand used in foundry work comprises
 - (a) alumina, silica and clay
 - (b) silica and clay
 - (c) clay and alumina
 - (d) silica and alumina
- (iii) The criteria for selection of electrode diameter in arc welding is
 - (a) type of welding process
 - (b) thickness of the components to be welded
 - (c) voltage used
 - (d) current used
- (iv) In arc welding, arc is created between electrode and work by
 - (a) flow of current
 - (b) voltage
 - (c) contact resistance
 - (d) electrical resistance
- (v) Hot working improves the mechanical properties of the metal due to
 - (a) recovery of grains
 - (b) recrystallisation
 - (c) grain growth
 - (d) refinement of grain size
- (vi) In four high rolling mill the bigger rollers are called
 - (a) guide rolls
 - (b) back up rolls
 - (c) main rolls
 - (d) support rolls
- (vii) In drawing operation, the metal flows due to
 - (a) ductility
 - (b) work hardening
 - (c) plasticity
 - (d) shearing
- (viii) Centering can be done most accurately on
 - (a) four jaw chuck
 - (b) three jaw chuck
 - (c) collet chuck
 - (d) magnetic chuck.

SUMMER 2006 FUNDAMENTALS OF DESIGN AND MANUFACTURING

Time: Three hours Maximum marks: 100

Answer FIVE questions, taking ANY TWO from **Group A**, ANY TWO from **Group B** and ALL from Group C

All parts of a question (a, b, c etc) should be answered at one place. Answer should be brief and to-the-point and be supplemented with neat sketches. Unnecessary long answers may result in loss of marks. Any missing data or wrong data may be assumed suitably giving proper justification. Figures on the right-hand side margin Indicate full marks. Group A

- 1. (a) What are the major stages of engineering design? Discuss with a suitable example. 8 (b) What is the role of need analysis in the design process? Give one need statement for each of the following: (i) Bicycle (ii) Washing Machine (iii) Personal Computer (iv) Private Car. (c) What are the main limitations of the sand casting process and how are they overcome? 2 (a) Why is 'clearance' provided in die and punch for blanking and piercing operations? Explain with neat sketches. (b) Distinguish between cold and hot working with respect to principle, advantages and applications. 6 (c) What are the distinguishing features between a casting and a pattern? 6 3. (a) What do you mean by design communication? How does a drawing help to a design engineer to share his ideas (b) During writing technical report, what points should be kept in mind for easy communication? 6 (c) What factors govern the selection of manufacturing process for a product? 6 4. Differentiate between: 5×4 (i) Piercing and Blanking (ii) Creative Design and Innovative Design (iii) Discrete Manufacturing and Continuous Manufacturing (iv) Physical Reliability and Economic Feasibility. Group B 5. (a) What is the source of heat in resistance welding? Why is the control of pressure important in
- resistance welding? (b) Explain briefly the purposes of using fluxes in welding 6 6
- (c) Why are truing and dressing necessary for a grinding wheel? 6. (a) What do you meant by integration? How does it differ from interfacing? What are the basic needs for integration?
 - (b) Explain in detail the integration of CAD and CAM. What is the role of computer in this integration? 6
- (c) What are the major benefits derived from group technology concept in manufacturing?
- 7. (a) What is robotic cell? Draw a robotic cell and label its all parts.
 - (b) What are the main elements of an information system? Distinguish between hard and soft information.

- (c) Giving a suitable example, explain the concept of designing a process for manufacturing integration.
- 8. (a) Define cutting velocity, feed and depth of cut as applied lo turning in lathes. What major factors are considered while selecting the values of those three machining parameters?
 - (b) Distinguish between:
 - (i) Boring and Internal Turning
 - (ii) Shaping and Planning.
 - (c) What is computer aided process planning (CAPP)? What type of data is required for developing a CAPP system? Distinguish between variant and generative systems of process planning.

Group C

9. Write the *most correct* answer:

1×6

- [A] (i) In which of the following process, the electrode is non-consumable"?
 - (a) Gas welding
 - (b) Arc welding
 - (c) TIG welding
 - (d) Thermit welding
 - (ii) The highest cutting speed is used in
 - (a) Centreless grinding
 - (b) Surface grinding
 - (c) Cylindrical grinding
 - (d) Internal grinding
 - (iii) In the metal forming processes, the stresses induced in the material are
 - (a) less than the yield strength of the material.
 - (b) greater than the ultimate strength of the material.
 - (c) less than the fracture strength of the material.
 - (d) less than the limit of proportionality.
 - (iv) In which process the material is pulled through a die?
 - (a) Extrusion process
 - (b) Rolling process
 - (c) Wire drawing process
 - (d) Forging process
 - (v) Group technology brings together and organises
 - (a) parts and simulation analysis.
 - (b) automation and tool production.
 - (c) common parts, problems and tasks
 - (d) None of the above,
 - (vi) Point angle of a twist drill used for drilling hole in mild steel is
 - (a) 118^0
 - (b) 90^0
 - (c) 180°
 - (d) 0^0
- {B} Answer the following:

2x7

- (i) How are electrodes specified?
- (ii) Define the term deep drawabilily.
- (iii) What is bath Tub Curve?
- (iv) What is parting line'?
- (v) What is the significance of recrystallisation temperature in metal forming'?
- (vi) What is manufacturing logic?
- (vii) What do you understand by intelligent robots?

WINTER -2006 FUNDAMENTALS OF DESIGN AND MANUFACTURING

Answer FIVE questions, taking ANY TWO from Group A, ANY TWO from Group B and ALL from Group C.

Group A

Group A	
Q.1 (a) Explain the term 'design'. Enumerate the various steps involved in design pro	ocess.
Explain these in brief.	(2+2+4)
(b) Distinguish clearly the terms 'Need Identification', 'Need Statement' and 'Nee	ed Analysis'.
	(2+2+2)
(c) Explain 'creativity' and 'creative process'. Explain why one should not have m	,
become creative.	(3+3)
Q.2 (a) What do you mean by 'standards of performance'? Enumerate the factors affec	` '
Explain these factors in brief.	(2+2+4)
•	,
(b) What do you understand by specifications? At what stage these should be defi	_
the process of product development? Explain.	(2+1+3)
(c) Explain 'Evaluation' and 'Evolution' in the design process.	(3+3)
Q.3 (a) Explain 'Morphological approach'. Enumerate the phases of morphology of de	
Explain these in brief.	(2+3+3)
(b) Describe the methods of achieving reliability. Compare the reliability of system	ns with
components in series and components in parallel.	(3+3)
(c) How will you organize and communicate the design?	(3+3)
Q.4 (a) Write down the objectives of design for manufacturing, Enumerate the points to	o be
observed while	
designing for 'Casting' and 'Easier Machining'?	(2+3+3)
(b) Name the sand moulding methods. Describe these in brief with the help of figure	es. What is
directional solidification?	(2+3+2)
(c) Explain permanent mould casting processes.	(5)
Group B	()
Q.5 (a) With the help of figures, explain the following for a single Point cutting tool:	
(i) Rake angle,	
(ii) clearance angle,	
(iii) Cutting angle,	
(iv) Nose Radius and	
(v) Tool signature	(1x5)
(b) Name different types of chips. Explain their formation. What is chip breaker?	(2+4+2)
	,
(c) Describe the working of a drilling machine. What Specifications are needed to p	
machine.	(5+2)
Q.6 (a) What is surface grinder? Under what conditions the use of this machine is record	
	(4+2)
(b) Describe, with a neat sketch, the working principle of Electro chemical machin	•
applications. What is Electrolyte and explain its role?	(4+2+2)
(c) What are the advantages of welding joint over other joints? Explain oxy-acetyl	_
welding procedure.	(2+4)
Q.7 (a) Discuss the application of the following in manufacturing	
(i) group technology, (ii) simulation (iii) database management.	(2+2+2)
(b) In the present business scenario, the integration of commercial, economic and	
technological aspects is essential. Justify the statement.	(8)
(c) Discuss the application of the information technology in the integration of bus	iness and
technological aspects.	(6)

Q.8 (a) Explain the available	better features in 'co	mputer aided Proces	ss planning (CAPP)'	over the
'conventional process	planning approach.'	How does CAPP he	elp in selection of ma	chine
tools?				(6+2)

(b) Describe the role of integration of 'product' and 'process design' for economic manufacturing. (6)

(c) What for an 'automated guided vehicle (AVG)' is used? Describe the role of sensors in controllers.

Group C

Q.9 (A) Explain the following in brief:

(2x6)

- (i) Economic feasibility and utility
- (ii) Permanent Mould Casting
- (iii) Tool- work interaction
- (iv) System concept
- (v) Robots
- (vi) Recyclability.
- (B) Select the correct answer out of the alternative choices Of the following:

(1x8)

- i) Cores are used to
 - a) make desired recess in castings
 - b) strengthen moulding sand
 - c) support loose pieces d) remove pattern easily
- ii) Shell moulding process requires
 - a) wooden patterns b) sand patterns
 - c) plastic patterns d) metal patterns
 - iii) In arc welding, eyes need to be protected against
 - a) intense glare
 - b) infra-red rays only c) ultraviolet rays only
 - d) both infra-red and ultraviolet rays
 - iv) The gases used in tungsten inert gas welding are
 - a) hydrogen and oxygen b) argon and helium
 - c) argon and neon d) helium and neon.
 - v) Laser is produced by
 - a) graphite b) emerald
 - c) ruby d) diamond.
 - vi) Production of contours in flat blanks is termed as
 - a) blanking b) piercing
 - c) perforating d) punching.
 - vii) For ferrous materials, the helix angle of drill is taken as
 - a) 30°
- b) 45°
- c) 60°
- d) 90°.
- viii) The front rake required to machine brass by HSS tool is
 - a) 15°
- b) 10°
- c) 5°
- d) 0°.

SUMMER - 2007 FUNDAMENTALS OF DESIGN AND MANUFACTURING

Time Three hours Maximum Marks :100

GROUP - A

1	(a) What are the different stages of Engineering design? Discuss with a suitable exa	ımples.		
		5+3		
	(b) How will you integrate the functions of design and manufacturing? How it will h	elp in		
	achieving economic manufacturing? -	3+3		
	(c) List out the characteristics of a good designer.	6		
2	(a) With the help of an example, explain the concept of Morphology of Design.	6		
	(b) What is the role of the need analysis in the Design Process? Distinguish between	need		
	analysis and need statement.	4+4		
	(c) Clearly explain 'Brainstorming' with respect to ideonomics.	6		
3	(a) What do you understand by design for safety?	5		
	(b) What are the essential contents of a technical report? Explain briefly.	5		
	(c) Explain the concept of manufacturing as input - output model. What are the difference of the concept of manufacturing as input - output model.	rent		
	processes that will represent the area of manufacturing?	10		
4				
	(a) Considerations of design of castings, and	4		
	(b) Reliability and roboust design			
	GROUP - B			
5	(a) Distinguish between orthogonal casting and oblique cutting.	6		
	(b) Write notes on the following:			
	(i) tool signature	2		
	(ii) Machinability	2 2		
	(iii) cutting fluids	2		
	(c) While doing orthogonal machining with cutting tool having a 10" rake angle, the	chip		
	thickness is measured to be 0 - 40 mm, the uncut thickness being 0 - 16 mm. Find	out the		
	shear plane angle and also the magnitude of the shear strain.	8		
6	(a) what is surface grinding? When do you recommend the use of the machine? Explain	the		
	alternative arrangement of spindle and table of surface grinder along with their relat	ive motion		
	with the help of suitable sketches.	8		
	(b) (i) describe the working of 'electromechanical machining set up.	4		
	(ii) What do you understand by rate of metal removal?	4		
	(c) What is manufacturability? Describe the significance in manufacturing.	4		
7	(a) Distinguish between hard and soft information. Give examples for each case.	6		
	(b) What are the desirable features of database management system? How does it help in	1		
	manufacturing? Describe briefly a database model for manufacturing.	8		
	(c) What is networking? Describe its special features and important elements.	8		
8	(a) what do you understand by group technology? How the parts are segregated in broad 6	l groups?		
	(b) Discuss the problems of integrating industrial robots with other flexible automated s	_		
	modern plant. E.g. AGV, CNC machine tools, etc.	8		
	(c) What is Computer Aided Process Planning? How is it superior to manual process planting.	_		
	Explain.	6		
0	GROUP - C			
9	(A) Explain the following:	2		
	(i) Selection of Machine tools	2		
	(ii) Controllers and sensors	2		

(d) plasma welding

(b) MIG welding

WINTER 2007

FUNDAMENTALS OF DESIGN AND MANUFACTURING

Time: Three hours

Maximum marks: 100

Answer FIVE questions, taking ANY TWO from Group A,

ANY TWO from Group B and ALL from Group C.

Group A

 (a) Discuss the engineering design process enumerating the various steps involved. (b) What is 'morphological analysis'? How is it useful for the design process? (a) Explain in brief: (i) Brainstorming; and (ii) Economic feasibility and utility. (b) Discuss 'need analysis' and the 'need identification' processes. (a) What is the difference between manufacturing and production? Classify the manufacturing processes. (b) Explain the term 'design for manufacture' giving examples. Write short notes on the following: (i) Reliability and Robust Design (ii) Investment Casting. 	5+5 5+5 5+5 5+5 various 5+5 10 2x10
Group B	
5. (a) Describe in brief the tool-work interaction in turning and drilling processes. (b) How are grinding wheels specified? Explain the role of 'structure' in a grinding wheels specified?	5+5 eel. 5+5
6. (a) What is group technology? Discuss the advantages of using group technology in a manufacturing set-up.(b) What is simulation? Explain briefly. How is it useful in design and manufacturing	5+5
(b) what is simulation? Explain otherly. How is it useful in design and manufacturing	5+5
7. Write short notes on the following:(i) Database Management System(ii) AGV.	2x10
8. (a) Discuss in brief Computer Aided Process Planning. Also, describe its types (b) What is a robot? How are robots specified?	10 10
Group C	
 (i) Grinding wheel is a cutting tool. (ii) The most commonly used material for single point cutting tools used on lathe 	1x 10
(iii) Drawing is a language of (iv) In gas welding, and —— are mixed.	
(v) Quick return mechanism is used on machines.	
(vi) In hot working, metals are heated the recrystallization temperature. (vii) are used on intelligent robots.	
(viii) To create replica of a system,technique is used.(ix) Computer aided process planning is the link between and(x) AGV is a cart.	
(B) Answer the following in brief: 2x5	
 (i) Name five commonly used unconventional machining processes. (ii) Name two finishing processes which can improve the finish of ground surf (iii) Name two advanced welding techniques. (iv) Name two investment casting processes. (v) Name two allied welding processes. 	àces.

SUMMER 2008: FUNDEMENTALS OF DESIGN AND MANUFACTURING

Time: Three hours Maximum marks: 100

Answer FIVE questions, taking ANY TWO from Group A,

ANY TWO from Group B and ALL from Group C.

Group A
1. (a) Draw a flow chart showing different stages of engineering design. Explain why stages are repeated several time. (8 M)
(b) How will you integrate the functions of design and manufacturing? How will it help in achieving economic manufacturing (6M)
(c) Differentiate between standardization and specification giving appropriate examples. (6 mark)
2. (a) Explain in brief (i) robust design, and (ii) role of brainstorming in design idea generation. (3+3 mark)
(b) Describe the terms 'economic feasibility', 'recyclability', and 'evaluation of design'. (2+2+2)
(c) What do you understand by 'reliability' and why is it considered? What are three
categories of failures? Illustrate graphically number of failures vs. time. (8 mark)
3. (a) How will you check the design for clarity, simplicity and safety? Also, explain how design is organized and communicated (10M)
(b) Compare the reliabilities of system with components in series vs. components in parallel. In a system, there are 10 components in series, each with a reliability factor of 0.95. What
is the overall reliability of the system? If each of the 10 components is in parallel and has individual factor of 0.30 only, what is the system reliability? (10M)
4. (a) How are dissolved gases removed from castings? List four castings? List four casting
defects. (6 mark)
(b) With the help of neat sketches, explain extrusion and drawing processes. (6mark)
(c) Compare the cast and forged products of the same geometry from the view points of
strength and quality. (6 mark)
(d)What is the effect of lubrication on die (tool) life during drawing operation? (2mark)
Group B
5. (a) Classify the machining processes. Name the operations which can be performed on a
lathe machine (8 mark)
(b) Differentiate between the shaper and planner. (6M)
(c) What do you mean by arc welding? What precautions should be taken during welding?

- g?
- 6. (a) Calculate the cutting time for cutting 150 mm long keyway using HSS end mill of 20 mm diameter having four cutting speed is 38m/min. Assume approach and over-travel distance as half of the diameter of the cutter and depth of 4.2 mm can be cut in one pass

(10 M)

- (b) On what basis parts are grouped into families in Group Technology (GT)? Discuss with examples. What are the benefits of GT over the conventional setup? (10 M)
- 7. (a) What is design for manufacturability? How can it be realized in practice? Explain with an (10 M)
 - (b) What do you mean by unconventional machining process? Why are these processes necessary? Explain (6 M)
 - (c) Explain briefly information technology and its elements. (4 M)
- 8. (a) Discuss the applications of following in the field of engineering:

(i) Sensors, (ii) robots, (iii) Controller. (iv) AGVs, and (v) AS/RS. (15M)

(b) What is computer Aided process planning (CAPP)? How is it superior to manual process planning? (5M)

Group C

9. (A) Explain the following in brief:

 $(5\times2M)$

- (i) Tool signature
- (ii) Data Base Management System (DBMS)
- (iii)Hot and cold working of metals
- (iv) Modelling vs Simulation
- (v) Soft information
- (B) State whether the following statements are true or false:
 - (i) Moulding is carried out in moulding boxes called flasks.
 - (ii) Taper turning means to produce a conical surface by gradual reduction in diameter from a cylindrical work piece
 - (iii) Laser beam machining is an unconventional machining process.
 - (iv) Capstan lathe is never used on smaller work.
 - (v) Sand mould is an example of permanent mould.
 - (vi) Welding does not permit any freedom in design.
 - (vii) Discontinuous chips are usually produced while cutting more brittle materials.
 - (viii)The size of the shaper or planer is specified by the maximum length of stroke.
 - (ix) Non-conductive materials can be machined by ECM process.
 - (x) In case of USM, the metal removal cost is low.

WINTER 2008

FUNDAMENTALS OF DESIGN AND MANUFACTURING

Answer FIVE *questions, taking* ANY TWO *from* **Group A**,

ANY TWO from Group B and ALL from Group C

Group A

1 (a) what are the principle of modern engineering design? Discuss the same with a suitable example. (10)

(b) What do you mean by morphology of design? IIIustrate with the help of an example

(10) (2×10)

- 2. Describe the following in detail:
 - (a) Brainstorming technique
- (b) Design for manufacture.
- 3. (a) Explain the sand casting process. Discuss various material used for making pattern. (10)
 - (b) What do you by reliability? Compare the reliability system with component in series parallel. (10)
- 4. (a) What is metal working? Discuss advantages of cold working over hot working. (10)
 - (b) What is the significance of re-crystallization temperature in metal working? Explain rolling process in brief. (10)

Group B

- 5. (a) What are the main types of chips formed during metal cutting? What are the disadvantages of orthogonal cutting over oblique cutting? (12)
 - (b) What is tool failure? How it happens?

(8)

- 6 (a) How would you specify a lathe machine? List main components of a lathe machine. (10)
 - (b) Explain the grinding process. What are various factors considered in selection of proper grinding wheel? (10)

AMIE 15 7. Explain the following in brief: (4×5) (a) Classification of welding processes. (b) Automated storage and retrieval systems (c) Database management systems 8. (a) Define the technology (GT) concept .Discuss different stages involved for adopting a plan for (10)(b) What is computer aided process planning? How is it superior to manual process? Explain. (10)Group C 9. Define / explain the following in brief: (i) Robert (ii) Hot working (ii) Feasibility (iv) AS/RS (v) Group technology (vi) Simulation (vii) Welding (viii) CNC (ix) Heat treatment (x) Information Technology **SUMMER 2009** FUNDAMENTALS OF DESIGN AND MANUFACTURING Group A (a) Consider the example of product, and briefly explain various steps to be followed to design

this product. (10)(b) Define product life-cycle. Explain various stages of product life-cycle with a suitable example. (10)(a) Discuss the important features of 'Design for Assembly' 2 (10)(b) Suggest an organization structure for the design office of toy manufacturing company. (10)3. (a) Give steps-by-steps procedure for the investment casting process. Outline some typical applications of the process. (10)(b) Draw sketches to distinguish between punching and blanking operations of metal forming (5) (c) Compare hot working with cold working of metals. Give relative advantages of each 4 (a) Describe the permanent mould casting process. Give any two application of this process of casting. (10)(b) Sketch wire drawing operation. What factors determine the drawing ratio? (5) (c) Sketch a three high rolling mill. Give advantages and limitations of three high rolling. (5) GROUP B 5. (a) Distinguish between shaping and planning operations. Name the machine on which these operations are performed.

6. (a) Describe the principle of electrochemical machining or electric discharge process. Give

(b) Sketch to describe the formation of a flat surface on a lathe.

(c) Give any there methods of taper turning on a lathe.

advantages and limitation of the process.

(8)

(6)

(6)

(10)

(10 M)

(b) Describe the essential parts of a milling machine? What are the operations that can be

6. (a) With the help of schematic illustrations describe the principles of operations of EDM

performed on a milling machine?

- 7. (a) What is a Thermite welding? What does a Thermite mixture consists of and what reactions takes place in Thermite welding? (10M)
 - (b) What is manufacturability? Describe its significance in design for manufacturing. (10M)
- 8. Explain the following:

 4×5

- (a) CIM
- (b) Group technology
- (c) Brain storming
- (d) Simulation

Group C

9. Define/explain the following:

 10×2

- (i) AGVs
- (ii) Name fusion welding processes
- (iii) Significance of re-crystalline temperature
- (iv) GT layout
- (v) Function of cores
- (vi) Function of risers
- (vii) Design checks
- (viii) Use of information technology
- (ix) CAPP
- (x) Soldering.

SUMMER 2010: FUNDAMENTALS OF DESIGN AND MANUFACTURING

Time: Three hours Maximum marks: 100

Group A

- 1. Select a product, such as the telephone or the television, and prepare sketches to describe how their appearances have changed from their inception to the present. What role has technology had in influencing these changes? (20)
- 2. (a) Explain how the systematic design process can aid in creating quality products. (8)
 - (b) What is the role of need analysis in the design process. Give one need statement for each of the following: (4x3)
 - (i) Bicycle (ii) Washing machine (iii) Personal Computer (iv) Private car
- 3. (a) What are main advantages of the casting process? What are its limitations and how are they overcome?
 - (b) Explain the following:

4x3

- (i) Rolling (ii) Extrusion (iii) Blanking (iv) Forging
- 4. (a) Define the term 'reliability' and 'maintainability'. Compare the reliability of systems with components in series *vs.* components in parallel. (10)
 - (b) What is 'input-output' model? How will you use this model for a manufacturing process? What are the main factors on which the selection of a manufacturing process depends? (10)

Group B

- 5. (a) What are the main types of chips formed during metal cutting? Why are non-homogenous chips formed?
 - (b) Define cutting speed, feed and depth of cut as applied to drilling. What are the major factors on which above three factors depend?
 - (c) What is cutting ratio? How can it be determined?

4

6. (a) How have integration and information technology influenced the fields of product design and manufacturing?

(b) What is group technology concept in manufacturing? What are the important benefits derived from it? 7. (a) 'Simulation is one type of modelling' - is it rue? Discuss in detail. (6) (b) What are the main considerations to design a product by (i) a casting process, and (ii) a forging process. (c) What is computer aided process planning (CAPP)? What are the types of data required for developing a CAPP system? Differentiate between variant and generative systems of process planning (8) 8. (a) Explain the basic principle involved in electrochemical machining. (10)(b) Would electrochemical grinding be suitable process for sharpening ceramic tools? Why or why not? What about suing ultrasonics? (10)Group C 9. Briefly explain the following (10x2)(i) Design by evolution (ii) Problem identification (iii) Design morphology (iv) AGVs (v) Gantry robots (vi) Sensors (vii) Robust design (viii) Drawing and extrusion (ix) Casting defects (x) Hot and cold working **WINTER 2010** FUNDAMENTALS OF DESIGN AND MANUFACTURING Time: Three hours Maximum marks: 100 GROUP -A 1. (a) Explain briefly various steps to be followed to design a product. IIIustrate the same with the help of an example. (b) What is the role of need analysis in the design process? (6) (c) What is product life cycle? IIIustrate, with a suitable example, various stages of product life cycle. (2+6)2. (a) Briefly explain the principle of rolling with a neat sketch. Give three different types of rolling stand arrangements. (8) (b) What is group technology? How does it help in improving the economy of product ion process? **(4)** (c) Explain the integration of CAD and CAM in detail. (6) 3 (a) Briefly explain the steps involved in making a shell casting mold. (5) (b) Explain briefly the following: (3×5) (i) Design for manufacturability and its applications (ii) Various method of inspection of casting for internal and external defects 4. (a) What is Merchant's circle diagram? Discuss its significance (6)(b) Differentiate among shaping, planning and slotting as regards to relative tool and work

(c) Explain different machining operations that can be performed on a vertical spindle machine.

(8)

motions. Show sketches of these operations in support to your answer.

GROUP -B

- 5. (a) How would you specify a grinder? Describe various factors used in the selection of a grinding wheel.
 - (b) Briefly describe the following finishing operations:

 (3×4)

- (i) Honing (ii) Lapping (iii) Buffing
- 6. (a) With the help of schematic illustrations, describe the principle of operation of electrochemical machine

(8)

(12)

- (b) What are the advantages of unconventional machining process? Explain the working of ultrasonic drilling with suitable sketches?
- 7 (a) Explain (showing sketches) the following in brief:

 (3×4)

- (i) Submerged arc welding
- (ii) Metal inert gas welding
- (iii) Thermit welding
- (b) Why is it necessary to achieve directional solidification in casting? What are the methods usually employed for obtaining conditions suitable for directional solidification?

 (8)
- 8. Explain the following:

 (4×5)

- (a) Role of simulation, modeling and optimization in engineering design.
- (b) Automatic storage and retrieval system
- (c) Computer Aided process planning
- (d) OPITZ classification system of GT.

GROUP-C

9. Briefly explain the following:

 (10×2)

- (i) Various methods of heat treatments of steels
- (ii) Group technology
- (iii) Hot tears and cold shut defects in casting
- (iv) HAZ
- (v) Information technology and its elements
- (vi) Creative, adoptive and variant design
- (vii) Various types of chip formation I a ingle point cutting operation
- (viii) Extrusion and rolling operations
- (ix) Reliability and maintainability
- (x) Robust design

Compiled by By

JYOTHIS ACADEMY KOTTAYAM, KERALA.

Ph 0481 3247363 0484 4030711

Email jyothisacademy@gmail.com

www.amieindia.in

Contact us for Study materials, Question bank etc

SUMMER 2011 FUNDAMENTALS OF DESIGN AND MANUFACTURING

Time: Three hours Maximum marks: 100

Group A

Group A	
1 (a) Example briefly various steps to be followed to design a product with the help	=
example.	(8)
(b) Discuss the following:	(3×4)
(i) Design specifications	
(ii) Creative design	
(iii) Design by evolution.	(5)
2 (a) What do you mean by morphology of design? Explain briefly.(b) Explain various stages of a product life – cycle. What is its utility?	(5) (5)
(c) Write a descriptive note on 'design checks for clarity, simplicity and safety'.	(10)
3. (a) what are the advantage and disadvantages investment casting process? Mentic	` /
applications?	(8)
(b) What is sweep pattern? When is it used?	(4)
(c) Define the terms: (i) Sprue, (ii) Gate, (iii) Core, and (iv) Parting line.	$4\times 2)$
4. Differentiate between the following:	(4×5)
(i) Hot working and cold working.	
(ii) Rolling and forging	
(iii) Extrusion and write drawing	
(iv) Blanking and piercing.	
Charles B	
Group B 5. (a) What is ship 2 What are the main types of ships formed during metal cutting.	(9)
5. (a) What is chip? What are the main types of chips formed during metal cutting (b) Define cutting speed, feed and depth of cut as applied to a shaping process.	(8)
(c) What is Merchants circle diagram? Discuss its significance.	(4) (8)
(c) What is Werenants energy diagram: Discuss its significance.	(0)
6. (a) Describe grinding process. What are the various factors considered during sele	ection of
grinding wheels?	(8)
(b) Compare the machining characteristics of different machining process (such a	s EDM , ECM,
and USM) with respect to (i) metal removal rate (ii) surface finish obtained (· •
surface damage, and (iv) power required for machining	(4×3)
	C:.
7. (a) What do you mean by Computer Aided Process planning (CAPP) and state s	
advantages. Under what situation, CAPP is preferred as compared to manual	
planning. (b) Identify some of the benefits in integrating the design and manufacturing pro	(10)
are the basic elements that go into making up a robotic cell for a particular ap	
are the suste elements that go into making up a robotic cent for a particular up	pin eu tion. (10)
8 (a) what is gas welding? Explain different types of flames in oxy-acetylene weld	ling. State their
specific applications.	(10)
(b) Define group technology concept in manufacturing. Discuss the stages involved	ed for adopting
a plan for group technology.	(10)
Group C	
, i	$0 \times 2)$
(i) Selection of machine tools.	
(ii) Design for manufacturability	

(iii) Database management

- (iv) AS/RS
- (v) Concept of a system
- (vi) Design of assembly
- (vii) Brainstorming

(c) Robot (d) AGV

- (ix) Closed die forging
- (x) Velocity of shear in metal cutting

WINTER 2011

FUNDAMENTALS OF DESIGN AND MANUFACTURING

Time: Three Hours Maximum marks:100

	Group A	
1. (a)		-
	these steps in brief.	2+4+4
(b)	Distinguish between 'need identification' and 'need analysis'.	5.
(c)	Differentiate between 'standardization' and 'specification' giving appropriate	
	examples.	5
2. (a)	What is morphology of design? Explain all parts of morphology of design	4+6.
(b)	Explain 'evaluation' and 'evolution' in the design process.	6
(c)	How will you organize and communicate the design?	4
3. (a)	What is 'manufacturing'? How is it different from 'production'?	6
(b)	What is 'design for manufacture'? Explain	6
(c)	Define the terms 'reliability' and 'maintainability'	8
4. Des	scribe the following; 4×5	
	(a) Investment casting	
	(b) Technical report	
	(c) Rolling	
	(d) Extrusion.	
	Group B	

5. (a)) Classify machining processes. Name the operations performed on a lathe ma	achine. How
	will you specify a lathe machine? Show sketches.	4+2+4
(b) Differentiate between shaper and planar.	5
(c)) What is arc welding? What precautions should be taken during welding by a	arc welding
	process?	5
6. (a)) What is surface grinder? Under what conditions the use of this machine is a	recommended?
		2+4
(b)	What are the advantages of welding join over other joints? Explain oxyacety	lene gas
	welding	2+4
(c)) What is information technology? How are its elements important in present	scenario?
		4+4
7.	Explain the following in detail	5 ×4
	(a) Group technology	
	(b) Simulation	

8. (a) What is Computer Aided Process Planning? How is it better than manual process planning?

		_
(b)	What do you mean by unconventional machining process? Discuss their importance	6
(c)	Define cold working of metals Enumerate its advantages and disadvantages.	6

Group C

9. Briefly explain the following

10 ×2

- (i) Design by evolution
- (ii) Gantry robots
- (iii) Sensors
- (iv) AS/RS
- (v) Robust design
- (vi) Casting
- (vii) Forging
- (viii) Brainstorming
- (ix) Feasibility
- (x) System

Compiled by By

JYOTHIS ACADEMY KOTTAYAM, KERALA.

Ph Mob 094 9595 1100

Email jyothisacademy@gmail.com

www.amieindia.in

Contact us for Question Bank WITH ANSWERS And Study materials.

SUMMER 2012

FUNDAMENTALS OF DESIGN AND MANUFACTURING

Time: Three Hours Maximum marks:100

Group A

- 1. (a) What is a product life cycle? Illustrate various stages of product life cycle with a suitable example. (8)
 - (b) Describe the following in detail

 (3×4)

8

- (i) Design for reliability
- (ii) Design for assembly
- (iii) Design for re-cyclability.
- 2. (a) What are the main requirements to design a product? Explain briefly various steps to be followed to design a product. (8)
 - (b) Explain briefly the engineering design process and its structure.

(8)

- (c) Briefly explain the concept of following with respect to the new product design? (2×2)
 - (i) Brainstorming
 - (ii) Morphological analysis.

- 3. (a) describe the die-casting process. Explain briefly the advantages and disadvantages of die casting process over sand casting process.
 (b) List various characteristics that are required in the dry sand moulding
 4. Explain the following in brief.
 (4×5)
 - (i) Rolling and various types of rolling stand arrangements.
 - (ii) Advantages and disadvantages of hot and cold rolling
 - (iii) Captive foundry
 - (iv) Shell molding process.

Group B

- 5. (a) Draw the Merchant's force diagram and state the assumptions made in its development.
 - (b) Describe the essential parts of a lathe machine. Explain the various processes that can be performed on a lathe machine. (8)
 - (c) Differentiate between shaping, planning and slotting as regards to relative tool and work motion. (4)
- 6. (a) Describe the mechanism of material removal in ultrasonic machining with the help of schematic illustrations. (10)
 - (b) What are the various factors considered in the selection of grinding wheels? How are the grinding wheels specified? (10)
- 7. Briefly explain (using neat sketches) the method of joining the metals by the following welding processes. Also explain the advantages and disadvantages of each process: (4×5)
 - (i) Thermit welding
 - (ii) Submerged arc welding
 - (iii) TIG welding
 - (iv) MIG welding
- 8. Write short notes on the following

 (4×5)

- (i) CAPP
- (ii) Group Technology
- (iii) AS/RS
- (iv) Simulation and modeling

Group C

9. Define/explain the following:

 (10×2)

- (i) AGVs
- (ii) Significance of re-crystalline temperature.
- (iii) Sensors and robots
- (iv) Functions of cores
- (v) Uses and application of Information Technology
- (vi) CIM
- (vii) Data Base Management System
- (viii) Differences between soldering and brazing
- (ix) Creative, adoptive and variant designs.
- (x) Cold shut defect: causes and remedies.

WINTER 2012 FUNDAMENTALS OF DESIGN AND MANUFACTURING

Time: Three Hours Maximum marks:100

Wita Amuni marks. 100	
Group A 1. (a) What are the different stages of engineering design? Discuss with a suitable example. (b) How are needs for a particular product analysed? (c) Differentiate between morphology and anatomy of design.	8 6 6
(a) What are the main limitations of the sand casting process and how are they overcome?(b) What is investment casting? What are its advantages and limitations?(c) What are the distinguishing features between a casting and a pattern?	6 8 6
 (a) What is metal forming? What are the various process of metal forming? (b)Explain the following terms as applicable to rolling process: (i) Neutral point (ii) Angle of bite (iii) Draft (c) Explain the difference between punching and blanking with the help of neat sketches. 	6 3x2 8
 4. (a) Enumerate the reasons responsible for the development of advanced (unconventional) machining processes. Under what manufacturing conditions you will prefer to use these processes as compared to conventional machining processes. (b) Make a list of important process parameters in case of (i) electro-discharge machining and (ii) ultrasonic machining. (c) What are the capabilities that an effective Computer Aided Processs Planning (CAPP) system should have? Discuss in brief. Group B 	8 3+3 6
5. (a) What is group technology? What are the important benefits derived from group technology	gy
concept in manufacturing?	6
(b) What is information system design? List major steps explaining in brief the step to be followed in the design of an information system for manufacturing.(c) What is data life cycle? Explain briefly.	10 4
6. (a) Define welding. Classify different welding process.	4
 (b) What do you mean by polarity? Distinguish between straight and reverse polarity. What the main advantage of having different polarities? (c) Two 1 mm thick steel plates (sheets) are to be spot welded at a current of 10,000 A. Assuming effective resistance to be 200 μΩ, and current flow time of 0.1 sec, calculate the heat generated during the process. If the density of the spot weld nugget is 8g/cm⁻³ and its volume is 120x10⁻³cm³, calculate the efficiency of the process, assuming 1380 joules of are required to melt 1 g of steel. 	t is 6 the s
7. (a) Define speed, feed and depth of cut as applied to a drilling machine.	6
(b) What is grinding? What are the parameters that control the grinding process	8
(c) Find the angle at which the compound rest should be set to turn a taper on the workpiece having a length of 200 mm, larger diameter 45 mm and smaller diameter 30 mm.	6
8. (a) Discuss the concept of resolution, accuracy and repeatability of a robot arm.	8
(b) Discuss the future of factory automation in the light of industrial robotics.	6
(C) Distinguish between end effectors and sensors as applied to robots.	6
(C) Distinguish octation the effectors and sensors as applied to robots.	U

Group C

•	method the following in brief: Modular design Brainstorming) Recyclability) Flash in a forging operation Manufacturing integration) Selection of a manufacturing process i) Reliability ii) Economic feasibility) Permanent mould casting Robust	10x2
	SUMMER 2013	
	UNDAMENTALS OF DESIGN AND MANUFACTURING Time: Three hours Maximum Marks: 100	
1.	Group A) What is design? Write the checklist for engineering design problems. Explain four major dimensions of functionality of design. What is design review?	2+6 8 4
2.	What is communication? What are the factors on which effectiveness of ommunication depends? Differentiate between morphology of design and anatomy of design. Write the main elements of any technical report.	+ 6 8 4
3.) What is pattern? Explain different types of pattern allowances with a suitable diagra	
	Explain briefly the following terms relating to casting: (i) Permeability of moulding sand (ii) Role of clay in casting (iii) Core and core print (iv) Elements of gating system (iv) What is the differences between hot chamber and cold chamber die casting? Why is	2+6 4 x 2 3+1
4.) Explain progressive dies, compound dies and combination dies with a suitable diagr	_
) Define forging. Explain sequentially the various passes used in drop forging with a	8 2+6 4
5.		+3 4x2

- (ii) Spade drills
- (iii) Advantage of hydraulic shaping
- (iv) Climb milling
- (c) A grey cast iron shaft is machined in a centre lathe in 1 min. with a single cut. The shaft is 100mm long and 75mm in diameter. If the feed used is 0.30mm/revolution, what was the cutting speed? Assume over run = 2mm.
- 6. (a) Define centreless grinding. Describe the type of centreless grinding operations. Write the advantage and limitation of centreless grinding. 1+6+3
 - (b) Explain the principle of EDM with a neat sketch.

8

4

4

4

4

- (c) What are the three basic manufacturability considerations for design of weldments? 4
- (a) Differentiate between direct numerical control and computer numerical control.
 - (b) Explain the need of database for a manufacturing organization.
 - (c) What are the classifications of robots?
 - (d) Differentiate between variant process planning and generative process planning.
 - (e) What is 'Rule of Hundred' with respect to integration?
- 8. (a) Describe the factors on which selection of manufacturing method is done for a particulate product.
 - (b) Discuss the stages involved for adopting a plan for group technology.

Group C

9. Explain / solve the following in brief:

10 x 2

(i) Quill punches

7.

- (ii) Embossing and coining
- (iii) Product simplification
- (iv) Modular design
- (v) Customize product design
- (vi) String milling
- (vii) Projection welding
- (viii) Lead-through programming for robots
- (ix) For resistance spot welding of two 2.5mm thick aluminium plates, 5500 A current was passed for 0.2sec. Estimate heat energy required for welding. (Assume resistance = 75μ ohm).
- (x) Capacity planning.

For AMIE Postal Classes

Contact

JYOTHIS ACADEMY

Kottayam & Kochi

Kerala

Phone +91 94 95951100

Email jyothisacademy@gmail.com

www.amieindia.in

Winter 2013 Fundamentals of Design and Manufacturing

 1 (a) Explain briefly various steps to be followed to design a product. Illustrate the help of an example? (b) Discuss the following i) Creative design ii) Innovative design iii) Use of artificial intelligence in designing a product 	same with the
 2 (a) What is product life cycle? Illustrate, with a suitable example, various stages cycle (b) What are various shortfalls in traditional product design methodology? (c) Compare the reliability system with components in series against components 	(2+6) (6)
 3 (a) What are various steps used to prepare a mold in shell molding process? Give and disadvantages of shell molding process over green sand molding process? (b) What are various constituents of molding sand? What are the properties desir Molding sand from the standpoint of sound casting? (c) Define the following terms and their functions i) Riser ii) Chaplets 	$? \qquad (2+6)$
 4 (a) Briefly explain the principle of rolling with a neat sketch. Give three different stand arrangements (b) Explain the following processes using neat sketches where ever necessary i) Extrusion ii) Blanking iii) Piercing 	t types of rolling (4+4) (3x4)
Group B 5 (a) What is merchant's circle diagram? Discuss its significance (b) Differentiate between shaping, planning and slotting as regards to relative to motions. Draw sketches of these operations in support of your answer (c) Explain different machining operations that can be performed on a vertical sp machine?	(8)
 6. (a) How would you specify a grinder? Describe various factors used in the select wheel (b) Briefly describe the following finishing operations (3x4) i) Honing ii) Lapping iii) Buffing 	etion of a grinding (8)
7. (a) Describe the principle of operation of electro discharge machining with the hillustrations?(b) What are the advantages of unconventional machining processes? Explain the electrochemical machining process with suitable sketches	(8)
8. (a) Explain the following in brief with neat sketches; i) Submerged arc welding	(2 x 4)

ii) Metal inert gas welding

(b) Explain the following

 (3×4)

- i) Automatic storage and retrieval system
- ii) Computer aided process planning
- iii) OPTIZ classification system of Group Technology

Group c

- 9. Briefly explain the following
 - i) Various methods of heat treatment of steels
 - ii) Group technology
 - iii) Design for reliability
 - iv) Design for manufacturability
 - v) Various types of chip formation in a single point cutting operation?
 - vi) Robust design
 - vii) Thermit welding
 - viii) HAZ
 - ix) Hot and cold working of metals
 - x) Data base management system

Summer 2014 FUNDAMENTALS OF DESIGN AND MANUFACTURING GROUP A

- 1. (a) Why is it important to analyse needs? What are the objectives of need analyses? Give one need statement for (i) a bicycle, (ii) a text-book, (iii) a fan and (iv) a tree. 4 x 3
 - (b) How the need for a particular product be analysed?

2. Explain the following with the help of suitable examples:

7 + 7 + 6

8

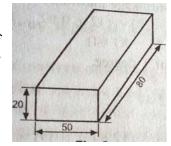
- (a) Design for manufacturability
 - (b) Product miniaturisation
 - (c) Morphology of design
- 3. (a) The manufacturer of a metal gear may include the following:
 - (i) Casting
 - (ii) Forging
 - (iii) Press work

List the advantages and limitations of each of the process as applied to manufacture of gears. 10 (b) What is meal forming? What are various processes of metal forming? What is the significance

- (b) What is meal forming? What are various processes of metal forming? What is the significance of recrystallisation temperature in metal forming? 3 + 3 + 4
- 4. (a) What do you mean by investment casting? What are the advantages and disadvantages of investment casting process? Give some applications. 3 + 3 + 4
 - (b) What is sweep pattern? When is it used? What are various materials used for making a pattern? 3 + 3 + 4

Group B

- 5. (a) Define Group Technology (GT) concept in manufacturing. Discuss the stages involved for adopting a plan for group technology.
 - (b) What do you understand by simulation? Discuss its utility.
 - (c) What is group technology centre? How does it work in an organization?
- 6. (a) What is Computer Aided Process Planning? How is it Superior to manual process planning? Explain.


- (b) In computer integrated manufacturing system, what is being integrated into what? What is the role of computer in this integration?(c) What is design for assembly? Explain briefly.
- 7. (a) What is chip? What are the main types of chips formed during metal cutting? Why are non-homogeneous chips formed?
 - (b) Define cutting speed, feed and depth of cut as applied to drilling operations. What are the major factors on which these tree factors depend?
- 8. (a) Describe grinding process. What are the various factors considered in selection of proper grinding wheels?
 - (b) Write a descriptive note on oxy-acetylene welding. Mention its application areas.
 - (c) Explain the principle of Electrochemical Machining (ECM) with a neat sketch.

Group C

- 9. Explain the following in brief:
 - (i) Reliability
 - (ii) Recyclability
 - (iii) Modular design
 - (iv) Selection of machine tools
 - (v) ASRS
 - (vi) Tool work i8nteraction
 - (vii) Gang milling
 - (viii) Product life cycle
 - (ix) Core backing
 - (x) Friction welding.

Winter 2014 Fundamentals of design and manufacturing GROUP A

- 1. (a) Discuss various phases of a product development process? (8)
 - (b) Explain how the following engineering design types are different from each other; innovative design, adaptive design, variant design and industrial design (8)
 - (c) Consider a system with three different components. Unit 1 and 2 are connected in series and unit 3 in parallel with the first two. What is the reliability of the system if $R_1 = 99.5\%$, $R_2 = 98.7\%$ $R_3 = 97.3\%$ at 100 hr? (4)
- 2 (a) Discuss various phase by which an engineering design is communicated. Explain the basic structure of a technical report? (12)
 - (b) Discuss the guidelines for design for manufacture? (8)
- 3 (a) What are factors on which permeability of a moulding sand depend? Discuss in brief? (5)
- b) A job, shown in figure is to be made of steel by casting process. The mould for this job is made from a wooden pattern. Determine the dimension of the wooden pattern. Assume machining allowance of 2mm on each side, shrinkage allowance of 2% and a taper allowance of one degree? (10)

10 x 2

4 (a) Differentiate between

i) segmental pattern and sweep pattern ii) match plate pattern and cope drag pattern (6) b) Discuss various types of hot and cold extrusion processes (14)Group B 5 (a). Distinguish between generating and forming when machining work part geometries. Give two examples of machining operations in which generating and forming are combined to create work part geometry (4) b) in orthogonal turning of a 50 mm diameter mild steel bar on a lathe, following data were obtained; rake angle = 15%, cutting speed = 100 m/min, feed 0.2 mm/rev, cutting force = 1800 N, feed force = 600NB. Calculate the chip thickness ratio, shear plane angle, and coefficient of friction, if the chip thickness is 0.3 mm. (12)c) What are functional differences between a shaper machine and a planer machine? (4) **6.** (a) Discuss working principles of the cylindrical grinding process. In what way centre-less process is more advantageous than cylindrical grinding process (8) b) Discuss the importance of non conventional manufacturing processes in context with modern manufacturing industries (6) c) Discuss the submerged arc welding (SAW) process with the aid of a neat diagram (6) 7 (a) What is group technology? Explain various basis of part classification in group technology? (10)b) What is automated guided vehicle (AGV)? What are various types of AVG's? (10)**8**. (a) What are the factors that influence the selection of a manufacturing process to make a part? Discuss in brief? (10)b) Discuss the basic elements of an industrial robot? (10)Group c 9. Explain the following in brief; 1) Benefits of standardization 2) Design for assembly (DFA) 3) Difference between quality and reliability 4) Simulation 5) Core print 6) Robust design 7) Master pattern 8) Chaplet 9) Functions of dielectric in EDM 10) Chip breakers

SUMMER 2015 FUNDAMENTALS OF DESIGN AND MANUFACTURING Group A

1. (a) Discuss the Morris Asimow's seven phases of morphology of design.	7×2
(b) Explain the types of technological innovation.	6
2. (a) Discuss the various stages of product life cycle.	10
(b) Classify manufacturing processes. Briefly discuss each type of process.	10
3. (a) Explain how a green sand mould is made for sand casting, with a suitable example.	10
(b) Enlist some pattern making materials. On what basis a pattern-making material is select	ted? 5

(c) What are the differences between true centrifugal casting and semi-centrifugal casting?	5
4. (a) Discuss different types of cold drawing processes, with schematic diagrams.	10
(b) When will you select a forging process over other manufacturing processes? Discuss	
different types of forging processes.	10
Group B	
5. (a) Discuss various important components of a centre lathe, with a neat block diagram of a	centre
lathe machine.	10
(b) During orthogonal turning on a workpiece of diameter 120 mm at 100 m/min with rake	angle
15°, the width of cut and chip thicknesses are 0.4 mm and 0.3 mm, respectively. The f	eed
during the operation was 0.2 mm/rev. If the cutting force and thrust force are 1200 N and	d 300
N, respectively, calculate the shear angle, friction angle, shear stress and shear strain.	10
6. (a) What are the various factors to be considered in selection of a grinding wheel? Discus	s each
factor in detail.	6
(b) Define resistance welding. What is the source of heat in resistance welding? Describe to	ihe
sequence of steps in the cycle of a resistance spot-welding operation.	6
(c) Compare and contrast Electro Discharge Machining and Electrochemical Machining	
processes.	8
7. (a)Discuss how group technology can be applied in manufacturing and in product design.	10
(b) Justify the reasons for installing an AS/RS. What are the components and operating features are the components and operating features.	
of an AS/RS?	5 + 5
8. (a) What are the advantages of computer aided process planning? Discuss any two approach	
of computer aided process planning.	10
(b) What is robot end-effectors? Discuss various types of end-effectors. Identify some	
application areas where industrial robot can be applied.	10

Group C

 10×2

- 9. Explain the following in brief.
 - (i) Reverse engineering.
 - (ii) Quality Function Deployment.
 - (iii) Directional Solidification
 - (iv) Hot tears
 - (v) Reliability
 - (vi) Shear plane in orthogonal metal cutting.
 - (vii) Blanking
 - (viii) Face plate.
 - (ix) AGV
 - (x) Brainstorming.

For AMIE Regular & Postal Classes Contact

JYOTHIS ACADEMY

Kottayam & Kochi Kerala

Phone +91 94 95951100 +91 8281883311

Email jyothisacademy@gmail.com www.amieindia.in

WINTER 2015 FUNDAMENTALS OF DESIGN AND MANUFACTURING Group A

- 1. (a) What are the objectives if engineering design? Explain the following design concepts; (i) Design by evolution and (ii) Design by innovation. (W 2015 8M)
- (b) What do you mean by engineering design process? State and explain the stages of engineering design process. (W 2015 8M)
 - (c) Explain the conceptual framework of brainstorming.

(W 2015 4M)

- (a) Explain the tools and techniques for evaluation of engineering design concepts. Also, state and explain three conditions which are essential for making suitable decision for selection of a design.
 (W 2015 10M)
 - (b) What do you meant by robust design? State and explain five primary tools used for development of robust design. (W 2015 10M)
- 3. (a) Explain the concept of top-up and bottom down modularization. What are the advantages and limitations? (W 2015 8M)
 - (b) Explain following type of pattern with the help of a neat sketch. Also, state their application possibilities (W 2015 8M)
 - (i) Match plate pattern (ii) sweep pattern (iii) Follow board pattern (iv) Gated pattern
 - (c) What are the advantages and application possibilities of investment casting? (W 2015 4M)
- 4. (a) What do you mean by metal forming? Explain a forming process, which is being performed under the condition of tensile stresses, with the help of a neat sketch. Also state the advantages and limitations of the process. (W 2015 10M)
 - (b) Explain the difference between the hot metal working and cold metal working
 - (W 2015 6M) (c) Differentiate between forward and backward extrusion process (W 2015 4M)

Group B

- 5. (a) Draw the merchant's force diagram. State the assumptions made in the development of such a diagram. (W 2015 8M)
 - (b) Explain with the help of a neat sketch, the quick return mechanism used in the shaper (W 2015 6M)
- (c) What do you mean by negative rake milling? What are its advantages? Under what conditions you will recommend its use? (W 2015 6M)
- 6. (a) Explain cutting mechanism of the grinding process. How can you specify a grinding wheel? (W 2015 6M)
 - (b) What are the conditions under which you will commend for unconventional machining processes? (W 2015 4M)
 - (c) Differentiate between welding, brazing and soldering (W 2015 6M)
 - (d) What are the functions of coating provided over the electrodes? (W 2015 4M)
- 7. (a) What was the need for integration of manufacturing processes? Explain the concept of flexible
 - manufacturing system. State and explain the functions of various components of flexible manufacturing systems. What are the advantages and limitations of flexible manufacturing system? (W 2015 12M)
 - (b) Explain the conceptual framework of group technology. What are the various coding schemes used in group technology? Explain any one coding scheme briefly. (W 2015 8M)

8. (a) Explain the concept of economics of metal machining.

(W 2015 6M)

- (b) What are the various types of AGVs? Explain the working principle of AGV. What are its advantages. (W 2015 8M)
- (c) What do you mean by process planning? Explain computer aided process planning.

(W 2015 6M)

Group C

9. Answer the following in brief;

(W 2015 20M)

- (i) Draw Spikes
- (ii) Blow Holes
- (iii) Gating System
- (iv) Direct current reverse polarity
- (v) Magnetic are blow
- (vi) Design for assembly
- (vii) Modular Design
- (viii) Automated storage and retrieval system (AS/RS)
- (ix) Database management systems
- (x) Up-milling

SUMMER 2016 FUNDAMENTALS OF DESIGN AND MANUFACTURING Group A

1. (a) Discuss various stages of product life cycle. (S 2016 8M)

(b) Explain how customer's need is identified and analysed. (S 2016 8M)

(c) What are product design specifications? (S 2016 4M)

2. (a) Classify manufacturing processes. Briefly discuss each type of process. (S 2016 10M)

(b) Discuss the guidelines for 'Design for Manufacture'. (S 2016 10M)

3. (a) Differentiate between bottom gate and top gate.

(S 2016 4M)

(b) Explain, with a suitable example, how a green sand mould is made for sand casting.

(S 2016 10M)

- (c) Discuss causes and remedies of following sand casting defects:
 - (i) Misrun and Cold shut and (ii) hot tears.

(S 2016 6M)

- 4. (a) What are the advantages of cold extrusion over hot extrusion? Discuss cold extrusion processes. (S 2016 6M)
- (b) What is closed die forging? What are the typical products obtained by this process? Discuss the number of passes the product requires in closed die forging. (S 2016, 14M)

Group B

- 5. (a) With a neat block diagram of an engine lathe, discuss its important components.(S 2016 8M)
- (b) During orthogonal turning of mild steel at 210 m/min with a tool of rake angle 12°, the width of cut and uncut thickness are 1.8 mm and 0.2 mm, respectively. If the average value of the coefficient friction between the chip and tool is 0.55 and shear strength of the material is 390 N/mm², calculate the shear angle, cutting force and thrust force, using Merchant's theory. Also, calculate the shear angle (without using Merchant's theory), if the chip thickness is 0.5 mm.

(S 2016 12M)

- 6. (a) Differentiate between Gas Tungsten Are welding and Gas Metal Are welding processes. (S 2016 7M)
- (b) Compare and contrast Electrodischarge Machining and Electrochemical Machining processes. (S 2016 7M)
- (c) Describe the shielded metal are-welding process. Why is the shielded metal are-welding process difficult to automate? (S 2016 6M)

- 7. (a) What is Group Technology? Explain various basis of part classification in Group Technology. (S 2016 10M)
- (b) Discuss the need of installing automatic storage and retrieval systems (AS/RS). What are the components and operating features of an AS/RS? (S 2016 10M)
- 8. (a) Discuss the basis of selection of manufacturing processes to manufacture a part.

(S 2016 10M)

(b) Explain how computer aided process planning is better than conventional process planning. Discuss two approaches of computer aided process planning. (S 2016 10M)

Group C

9. Explain the following in brief:

(S 2016 20M)

- (i) Types of cutting tool wear
- (ii) Reliability
- (iii) Grinding wheel specification
- (iv) Robust design
- (v) Fettling
- (vi) Simulation
- (vii) Split pattern
- (viii) Importance of rake angle of a cutting tool
- (ix) Wire drawing
- (xi) Reverse engineering

For AMIE Regular & Postal Classes Contact

JYOTHIS ACADEMY

Kottayam & Kochi Kerala

Phone +91 94 95951100 +91 8281882211

Email jyothisacademy@gmail.com www.amieindia.in