ELECTRONICS

- In case of amplitude modulation if three sine waves simultaneously modulate the carrier with individual modulation indices m_1 , m_2 and m_3 , then total modulation index is given by:
 - (A) $\sqrt{m_1^2 + m_2^2 + m_3^2}$
 - (B) $m_1 + m_2 + m_3$
 - (C) $\sqrt[3]{m_1 m_2 m_3}$
 - (D) $(m_1 + m_2 + m_3)/2$
- Identify the false statement with regard to advantages and disadvantages of FM:
 - (A) FM is, or can be made, relatively immune to the effects of noise
 - (B) A much smaller channel is required by FM, up to 1/10 times as small as that needed by AM
 - (C) FM transmitting and receiving equipments tend to be more complex
 - (D) The amplitude of the FM wave is constant. It is thus independent of modulation index
- 3. The absorption of radio waves by the atmosphere depends on :
 - (A) the distance from the transmitter
 - (B) the polarization of the wave
 - (C) the frequency of the wave
 - (D) both the distance and the polarization of the wave
- 4. The most suitable method out of the following in measurement of the resistance of expected value less than 1 Ω is:
 - (A) Limit bridge method
 - (B) Wheatstone's bridge method
 - (C) Loss of charge method
 - (D) Kelvin's bridge method

- The diffusion current density is :
 - (A) directly proportional to the concentration gradient of charge carriers
 - (B) inversely proportional to the concentration gradient of charge carriers
 - (C) independent of the concentration gradient of charge carriers
 - (D) directly proportional to concentration of charge carriers
- 6. With increase in temperature:
 - (A) the resistivity of a conductor decreases while that of a semiconductor increases
 - (B) the resistivity of both conductor and semicodnuctor increases
 - (C) the resistivity of both conductor and semiconductor decreases
 - (D) the resistivity of a conductor increases and that of semiconductor decreases
- 7. The ratio of electron and hole concentrations in case of an intrinsic semiconductor is:
 - (A) greater than one
 - (B) less than one
 - (C) equal to one
 - (D) equal to square of the intrinsic carrier concentration

Electr.

- 8. In case of a centre-tap full-wave rectifier if V_{max} is the peak voltage across the secondary of the transformer, the voltage appearing across the nonconducting diode is:
 - (A) V_{max}
 - (B) 2 V_{max}
 - (C) $\sqrt{2}V_{\text{max}}$
 - (D) $V_{max}/\sqrt{2}$
- 9. In common base configuration if I_E is the emitter current and α is the current gain, the part of the emitter current which forms the collector current is:
 - (A) αI_E
 - (B) $(1 \alpha)I_R$
 - (C) $(1 \alpha)I_E + \alpha$
 - (D) $(1 + \alpha)I_E$
- 10. The configuration having the highest input resistance, lowest output resistance and voltage gain less than unity is:
 - (A) CE
 - (B) CC
 - (C) CB
 - (D) Both CE and CB
- 11. The graph plotted between the drain current I_D and gate-source voltage V_{GS} for a given drain source voltage V_{DS} of a MOSFET is called its :
 - (A) output characteristics
 - (B) input characteristics
 - (C) transfer characteristics
 - (D) load line

.

12.	2. The process used in growing thin layers of the material on the semiconduct						
	surface in fabrication of the semiconductor devices is known as:						
	(A)	Lithography					
	(B)	Metallization					
	(C)	Diffusion					
	(D)	Epitaxy					
13.	The	operation of N-channel JFET involves flow of :					
	(A)	electrons					
	(B)	holes					
	(C)	both electrons and holes					
	(D)	doping impurity ions					
14. The principle of superposition is a fundamental consequence of :							
	(A)	non-linearity					
	(B)	linearity					
	(C)	reciprocity					
	(D)	both non-linearity and reciprocity					
15.	The	branch relationship of a two terminal resistive element is linear if					
	it is						
	(A)	homogeneous					
	(B)	additive					
	(C)	homogeneous and additive					
	(D)	none of the above					
Elect	r.	4					

16.	In n	model analysis of networks the choice of a reference node :	
	(A)	alters the currents flowing through its branches	
	(B)	effects the operation of the network	
	(C)	alters the voltage across the elements	
	(D)	affects the voltage of various nodes	
17.	The	drain-source voltage at which the channel opening of a JFET reduce	8
	to ze	ero is known as :	
	(A)	cut-in voltage	
	(B)	punch-through voltage	
	(C)	pinch-off voltage	
	(D)	breakdown voltage	
18.	The	quality factor of any circuit is given by :	
	(A)	2π times the energy dissipated per cycle divided by the energy stored	d
		per cycle	
	(B)	2π times the energy stored per cycle divided by the energy dissipated	i
		per cycle	
	(C)	2π times the energy stored per cycle	
	(D)	2π times the energy dissipated per cycle	
Electr.		5 P.T.O	R
		1.1.0	

19,	The	normal binary code of Gray 11011 is:				
	(A)	11111				
	(B)	11110				
	(C)	11010				
	(D)	10010				
20.	At r	esonance frequency w, the Q of a series LCR circuit is given by:				
	(A)	ωL/R				
	(B)	ωC/R				
	(C)	R/wL				
	(D)	ω/RL				
21,	1. A device said to be active if its I-V characteristic lies in the :					
	(A)	1st quadrant				
	(B)	2nd and 4th quadrants				
	(C)	1st and 3rd quadrants				
	(D)	3rd quadrant				
22.	The	threshold voltage of p-channel enhancement MOSFET is :				
	(A)	zero				
	(B)	positive				
	(C)	negative				
	(D)	independent of device geometry				

6

Electr.

28	s^2	$\frac{b}{+as+b}$ is a second order filter gain function that realizes the						
	ch	aracteristics of a :						
	(A)	band pass filter						
	(B)	band reject filter						
	(C)							
	(D)	low pass filter						
24.	Ide	Identify the false statement from the following. The RC filters offer:						
	(A)	increased circuit reliability because for all the processing steps can be automated						
	(B)	improvement in performance because high quality components can be realized						
	(C)	an increase in parasitic						
	(D)	simpler design process						
25.	The	The frequency response curve of a first order filter rolls-off at a rate of:						
2	(A)	10 db/decade						
	(B)	20 db/decade						
	(C)	10 db/octave						
	(D)	20 db/octave						
26.	The t	The total number of sets of input conditions that will produce a high output						
	from	a three-input OR gate is :						
		7						
	(B)	8						
	(C)	15						
	(D)	16						

7

27.	The	e logic expression $\overline{\overline{A} + B} + \overline{\overline{A} + \overline{B}}$ on simplification reduces to :				
	(A)	A + B				
	(B)	A				
	(C)	AB				
	(D)	В				
28.	A NAND gate with all inputs connected together will function as :					
	(A)	OR gate				
	(B)	AND gate				
	(C)	NOT gate				
	(D)	NOR gate				
29.	According to De Morgan's theorem :					
	(A)	the complement of the product of two or more variables is equal to the				
		sum of the variables				
	(B)	the complement of the product of two or more variables is equal to the				
		product of the variables				
	(C)	the complement of the product of two or more variables is equal to the				
		product of the complements of the variables				
	(D)	the complement of the product of two or more variables is equal to the				
		sum of the complements of the variables				
Electr.		8				

30.	When	2's complement of a binary number is taken twice, the result w	vill				
	be:						
	(A)	square of the original number					
	(B)	double of the original number					
	(C)	original number					
	(D)	half of the original number					
31.	When binary number 1110101 is divided by the number 1001, the result						
	is :						
	(A)	1001					
	(B)	1101					
	(C)	1010					
	(D)	0101					
32.	In Sch	hottky TTL families a Schottky diode clamping between base and collec	tor				
	of the	of the transistor is used to:					
	(A)	prevent transistor saturation					
	(B)	prevent transistor breakdown					
	(C)	prevent short circuit failure					
	(D)	increase the fan-in					
33.	Identify the false statement. Excess-3 code :						
	(A)	is an unweighted code					
	(B)	is used in representing a alphanumeric data					
	(C)	is a self-complementing code					
	(D)	uses only 10 of the 16 possible 4-bit code groups					
Electr.		9 P.T	.O.				

- 34. In logic circuits the positive logic is one in which :
 - (A) logic 0 and logic 1 are represented by negative and positive voltages respectively
 - (B) logic 0 and logic 1 are represented by zero and positive voltages respectively
 - (C) the voltage corresponding to logic 0 is lower than that corresponding to logic 1
 - (D) the voltage corresponding to logic 0 is higher than that corresponding to logic 1
- 35. With a NAND RS-latch a low R and low S produces:
 - (A) high output
 - (B) low output
 - (C) no change
 - (D) race condition
- 36. A multivibrator which continuously switches between two quasi-stable states without external excitation is known as:
 - (A) bistable multivibrator
 - (B) monostable multivibrator
 - (C) astable multivibrator
 - (D) flip-flop

	37.	The	logical value of the logical function A + A is:	
(SI		(A)	0	
82		(B)	1	
		(C)	A	
		(D)	Ā	×
	38.	The	minimum number of JK flip-flops required for designing a modulu	us-10
		coun	ter is :	
		(A)	4	
		(B)	6	
		(C)	8	
		(D)	10	
	39.	Iden	tify the correct statement from the following:	
		(A)	Static RAM is volatile while dynamic RAM is non-volatile	
		(B)	Static RAM is non-volatile while dynamic RAM is volatile	
		(C)	Both static and dynamic RAM are volative	
		(D)	Both static and dynamic RAM are non-volatile	
	40.	Dyna	amic RAM :	
		(A)	uses bipolar or MOS flip-flop	
		(B)	uses MOSFET's and capacitors	
		(C)	needs no refreshing of the data	
		(D)	contains less memory cells than a static RAM on the same chip	area
	Electr.		11 P	P.T.O.

41.	8085 A microprocessor has:							
	(A)	10 restart instructions						
	(B)	8 restart instructions						
	(C)	6 restart instructions						
	(D)	4 restart instructions						
42.	The	The execution of RST2 instruction vectors to location:						
	(A)	0000 _H						
	(B)	0008 _H						
*	(C)	0010 _H						
	(D)	0018 _H						
43.	The	The hardware restart of 8085A microprocessor which has the highest priority						
	and	when active branches the program to location 0024 _H is:						
	(A)	RST 7.5						
	(B)	RST 6.5						
	(C)	RST 5.5						
	(D)	Trap						
44.	The decrease in gain of an RC coupled amplifier at low frequency is mainly							
	due to:							
	(A)	junction capacitances of the transistor						
	(B)	emitter resistance						
	(C)	coupling capacitor						
	(D)	voltage divider resistances used for self-biasing of the amplifier						
Electr	r.	12						

- 45. If R_i and R_o are the input and output resistances of an amplifier, its power gain in decibels equals its voltage gain in decibels when :
 - (A) $R_i = 2R_o$
 - (B) $R_i = R_o$
 - (C) $R_i = R_0/2$
 - (D) $R_i = 5R_o$
- 46. A phasor is :
 - (A) a vector representing the magnitude and phase of an alternating quantity
 - (B) graph representing the frequency and phase of an amplifier
 - (C) an instrument used for determination phase difference between two time varying quantities
 - (D) a colour tag for distinguishing between different phases of 3-phase supply
- 47. When the output flows for less than one-half cycle of the input signal, the amplifier is said to operate in :
 - (A) Class-A mode
 - (B) Class-AB mode
 - (C) Class-B mode
 - (D) Class-C mode

48.	If an amplifier has an overall current gain of 200 and input resistance of						
	20 $k\Omega$ with a load resistance of 10 $k\Omega$. The overall voltage gain of the						
	amplifier is:						
	(A) 20 dB						
	(B) 40 dB						
	(C) 60 dB						
	(D) 80 dB						
49.	Two amplifiers having mid band voltage gains 20 dB and 40 dB are connected						
	in cascade. The overall voltage gain of the cascade configuration						
	will be:						
	(A) 800 dB						
	(B) 60 dB						
	(C) 30 dB						
	(D) 2 dB						
50.	A class-B push-pull amplifier suffers from:						
	(A) intermodulation distortion						
	(B) excess harmonic distortion						
	(C) cross-over distortion						
	(D) none of the above						
51 .	An amplifier with a voltage gain of 1000 uses 1/100th of its output in negative						
	feedback, the gain with feedback is:						
	(A) 90.9						
	(B) 80.9						

(C)

(D)

20.9

10.9

52 .	A pro	ogram that accepts a high-level language program as input and generates	
	a co	rresponding machine language program as output is called :	
	(A)	Linker	
	(B)	Loader	
	(C)	Compiler	
	(D)	Editor	
53.	Out	of the following bridges which one is used for determination the	
	capa	citance:	
	(A)	Schering bridge	
	(B)	Wheatstone bridge	
	(C)	Kelvin bridge	
	(D)	Hay bridge	
54.	Whi	ch one of the following operators does not belong to unary operator	400
80	grou	p ?	
	(A)	++	
	(B)	<=	
	(C)		
	(D)	size of	
55 .	Iden	tify the false statement from the following:	
	(A)	an integer quantity cannot be added to or subtracted from a pointer	
		variable	
	(B)	a pointer variable can be assigned the address of an ordinary	7
		variable	
	(C)	a pointer variable can be assigned the value of another pointer	
		variable	
	(D)	a pointer variable can be assigned a null (zero) value	
Electi	г,	15 P.T.O	

N/

- 56. If i = 1, then on execution of ++ i statement the value of i will be:
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
- 57. Identify false statement. In C programming:
 - (A) a process directive may appear at any place in a source file
 - (B) only one processor directive can occur in a line
 - (C) a processor directive is terminated by a semicolon
 - (D) all processor directives begin with the sharp sign (#)
- 58. In C programming when working with stream-oriented data file, one has to establish first a buffer area. This is accomplished by:
 - (A) fwrite
 - (B) fopen
 - (C) fclose
 - (D) FILE
- 59. Which of the following operators enjoys the highest precedence in C programming?
 - (A) Unary operators
 - (B) Logical operators
 - (C) Relational operators
 - (D) Arithmetic operators
- 60. Idetnify the false statement from the following:
 - (A) A Union contains members whose individual data types may differ from one another
 - (B) The members that compose a union each are assigned its unique storage area within the computer's memory
 - (C) The members that compose a union all share the same storage area within the computer's memory
 - (D) A union can be member of a structure and a structure can be a member of a union.