Code No: R05210504

Set No. 2

II B.Tech I Semester Regular Examinations, November 2008 DIGITAL LOGIC DESIGN

(Common to Computer Science & Engineering, Information Technology and Computer Science & Systems Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Perform the following using BCD arithmetic. [4+4]
 - i. $1263_{10} + 9687_{10}$
 - ii. $7672_{10} + 3378_{10}$
 - (b) Convert the following:

i.
$$997_{10} = ()_{16}$$

ii.
$$257_{10} = ()_8$$

iii.
$$654_{10} = ()_2$$

iv.
$$101_{16} = ()_{10}$$

[2+2+2+2]

2. (a) Express the following functions in sum of minterms and product of maxterms.

i.
$$(xy + z) (y + xz)$$

ii.
$$B'D + A'D + BD$$
.

(b) Obtain the complement of the following Boolean expressions. [8+8]

i.
$$AB'C + AB'D + A'B'$$

ii.
$$A'B'C + ABC' + A'B'C'D$$

iii.
$$ABCD + ABC'D? + A'B'CD$$

iv.
$$AB + ABC'$$
.

3. (a) If

$$F_1(A, B, C) = A \oplus B \oplus C$$

$$F_2(A, B, C) = A\Theta C \Theta B$$

Show that
$$= F_1 = F_2$$

- (b) Show that $A \oplus B \oplus AB = A + B$
- (c) Obtain minimal SOP expression for the complement of the given expression: $F(A, B, C) = \prod (1, 2, 5, 7)$ And draw the circuit using NOR gates. [4+4+8]
- 4. (a) A multiple output combinational logic circuit is defined by the following functions. Draw the schematic circuits for F_1 and F_2 .

$$F_1(A, B, C, D) = \overline{A} \bullet \overline{\overline{A}D} \bullet (\overline{A} + BC)$$

$$F_2(A, B, C, D) = \overline{\overline{AD}} \bullet (\overline{A} + BC)$$

Using K-Maps simplify F_1 and F_2 and draw the reduced diagram circuit.

Set No. 2

Code No: R05210504

- (b) Design a full subtractor circuit with three inputs x,y,z and outputs D, B. The circuit subtracts X Y Z where Z is the input borrow, B is the output borrow and D is the difference draw the circuit using NAND gates. [8+8]
- 5. (a) Define the following terms related to filp-flops.
 - i. set-up time
 - ii. hold time
 - iii. propagation delay
 - iv. preset and
 - v. clear.
 - (b) Distinguish between combinational logic and sequential logic. [10+6]
- 6. (a) Design a 4-bit ring counter using T- flip flops and draw the circuit diagram and timing diagrams.
 - (b) Draw the block diagram and explain the operation of serial transfer between two shift registers and draw its timing diagram. [8+8]
- 7. (a) Explain the block diagram of a memory unit. Explain the read and write operation a RAM can perform.
 - (b) i. How many 32K * 8 RAM chips are needed to provide a memory capacity of 256K bytes.
 - ii. How many lines of the address must be used to access 256K bytes? How many of these lines are connected to the address inputs of all chips?
 - iii. How many lines must be decoded for the chip select inputs? Specify the size of the decoder. [8+8]
- 8. Reduce the number of states in the state table listed below. Use an implication table. [16]

Present state	Next state		Output	
	x=0	x=1	x=0	x=1
a	f	b	0	0
b	d	С	0	0
С	f	е	0	0
d	g	a	0	0
е	d	С	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0
