Code No: R05210504

(

Answer any FIVE Questions All Questions carry equal marks

- 1. Convert the following to Decimal and then to Hexadecimal.
 - (a) 1234_8
 - (b) 1267₈
 - (c) 11001111_2
 - (d) 11011101₂
 - (e) 786₁₀
 - [3+3+3+3+2+2](f) 555_{10}
- 2. (a) Find the complement of the following and show that F.F' = 0 and F + F' = 01.
 - i. F = xv' + x'v
 - ii. F = (x + y' + z)(x' + z')(x + y).
 - (b) Obtain the Dual of the following Boolean expressions. [8+8]
 - i. B'C'D + (B + C + D)' + B'C'D'E
 - ii. AB + (AC)' + (AB + C)
 - iii. A'B'C' + A'BC' + AB'C' + ABC'
 - iv. AB + (AC)' + AB'C.
- 3. (a) Construct K-map for the following expression and obtain minimal SOP expression. Implement the function with 2-level NAND -NAND form. $f(A, B, C, D) = (A + C + D) \left(A + B + \overline{D}\right) \left(A + B + \overline{C}\right) \left(\overline{A} + B + \overline{D}\right) \left(\overline{A} + B + \overline{D}\right)$
 - (b) Implement the following Boolean function F using the two level form: [8+8]
 - i. NAND-AND
 - ii. AND-NOR $F(A, B, C, D) = \Sigma 0, 1, 2, 3, 4, 8, 9, 12$
- 4. (a) Implement 64×1 multiplexer with four 16×1 and one 4×1 multiplexer. (Use only block diagram).
 - (b) A combinational logic circuit is defined by the following Boolean functions. $F_1 = \overline{ABC} + AC$ $F_2 = A\overline{BC} + \overline{AB}$ $F_3 = A\overline{B}C + AB$ Design the circuit with a decoder and external gates. [8+8]

Set No. 1

Code No: R05210504

	A sequential circuit with 3 D-flip-flops A, B and C has only one input 'X' at output 'X' with following relationship $D_A = B \oplus C \oplus X, D_B = A, D_C = B$	nd one
	(a) Draw the logic diagram of the circuit.	
	(b) Obtain logic diagram, state table and state diagram.	[16]
6.	(a) Draw and explain 4-bit universal shift register.	
	(b) Explain different types of shift registers.	[8+8]
7.	(a) Draw and explain the block diagram of PAL.	
	(b) Implement the following Boolean functions using PAL.	
	$w(A,B,C,D) = \Sigma m (0,2,6,7,8,9,12,13)$	
	$x (A,B,C,D) = \Sigma m (0,2,6,7,8,9,12,13,14)$	
	y (A,B,C,D) = Σ m (2,3,8,9,10,12,13) z (A,B,C,D) = Σ m (1,3,4,6,9,12,14).	[6+10]
	$Z(A,D,O,D) = 2 \operatorname{III}(1,3,4,0,3,12,14).$	[0+10]
8	(a) Describe the operation of the SR Latch using NAND gate with the l	help of

Set No. 1

- 8. (a) Describe the operation of the SR Latch using NAND gate with the help of truth table, transition table and the circuit.
 - (b) Explain the operation and use of De bounce circuit. [8+8]
