
Scrubbing with a basic solid or solution

Schematic design of the absorber of an FGD

 SO_2 is an acid gas and thus the typical sorbent slurries or other materials used to remove the SO_2 from the flue gases are alkaline. The reaction taking place in wet scrubbing using a CaCO₃ (limestone) slurry produces CaSO₃ (calcium sulfite) and can be expressed as:

$CaCO_3 (solid) + SO_2 (gas) \rightarrow CaSO_3 (solid) + CO_2 (gas)$

When wet scrubbing with a $Ca(OH)_2$ (lime) slurry, the reaction also produces $CaSO_3$ (calcium sulfite) and can be expressed as:

$Ca(OH)_2$ (solid) + SO₂ (gas) \rightarrow CaSO₃ (solid) + H₂O (liquid)

When wet scrubbing with a $Mg(OH)_2$ (magnesium hydroxide) slurry, the reaction produces $MgSO_3$ (magnesium sulfite) and can be expressed as:

$Mg(OH)_2$ (solid) + SO_2 (gas) $\rightarrow MgSO_3$ (solid) + H_2O (liquid)

To partially offset the cost of the FGD installation, in some designs, the CaSO₃ (calcium sulfite) is further oxidized to produce marketable $CaSO_4 \cdot 2H_2O$ (gypsum). This technique is also known as **forced oxidation**:

$$CaSO_3 \text{ (solid)} + H_2O \text{ (liquid)} + \frac{1}{2}O_2 \text{ (gas)} \rightarrow CaSO_4 \text{ (solid)} + H_2O$$

A natural alkaline usable to absorb SO_2 is seawater. The SO_2 is absorbed in the water, and when oxygen is added reacts to form sulfate ions SO_4 - and free H⁺. The surplus of H⁺ is offset by the carbonates in seawater pushing the carbonate equilibrium to release CO_2 gas:

 $\begin{array}{l} SO_2 \ (gas) + H_2O + \frac{1}{2}O_2 \ (gas) \rightarrow SO_4^{\ 2^-} \ (solid) + 2H^+ \\ HCO_3^- + H^+ \rightarrow H_2O + CO_2 \ (gas) \end{array}$