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                                             PART – A     (10 x 2 = 20) 

Answer All the Questions 

1. Find Fourier series given f(x) = x in - π ≤ x ≤ π. 

 

2. Define complex form of Fourier Series. 

 

3. Form Partial differential equation by eliminating ‘f’ from  

z = f(x3 – y3) 

 

4. Find the complete solution of .yxqp +=+  

 

5. State any two assumptions in the derivation of one dimensional 

wave equation. 

 

6. Define α2 in ut = α2 uxx. 

 

7. State the two dimensional heat equation in Cartesian as well as 

polar co-ordinates.  

 

8. Write the three positive solutions of the Laplace equation in polar 

co-ordinates. 

 

9. State Convolution Theorem of Fourier Transform. 
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PART – B     (5 x 12 = 60) 

Answer All the Questions 

 

11. Find the fourier Series expansion of f(x) of period ‘l’. 
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(or) 

12. Find first three harmonics in the Fourier Series of y = f(x) 

x 0 1 2 3 4 5 6 

y 1.0 1.4 1.9 1.7 1.5 1.2 1.0 

 

13. Solve (y + z) p + (z + x) q = x + y. 

(or) 

14. Solve (D2 – 2DD/ + D/2)z = x2 y2 ex+y where ., /
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15. Solve ytt = a2yxx 0 ≤ x ≤ l,  t > 0 subject to y (0, t) = 0 y(l, t) = 0, 

yt(x, 0) = 0 
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(or) 

16. A rod of length 20cm has its ends A and B kept at 30°C and 90°C 

respectively until steady state conditions prevail. If the 

temperature at each end is then suddenly reduced to 0°C and 

maintained so, find the temperature u(x, t) at a distance ‘x’ from 

A, at any time ‘t’. 

 



17. An uniformly ling metal plate in the form of an area is enclosed 

between the lines y = 0 and y = π for positive values of x. The 

temperature is zero along the edges y = 0 and y = π and the edge 

at infinity. If the edge x = 0 s kept at temperature ‘ky’, find the 

steady state temperature distribution in the plate.  

(or) 

18. A semi circular plate of radius a has its boundary dimeter kept at 

temperature zero and circumference at f(θ) = k, 0 < θ < π. Find 

the steady state temperature at any distribution point of the plate. 

 

19. Find Fourier Transform of the distribution  
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(or) 

20. Find Fourier Sine and Cosine Transform of e-ax a > 0, and hence 

find Fourier Sine Transform of 22
ax

x

+  and Fourier cosine 

transform of 22
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