7422

Register		ä	F	
Number				

MATHEMATICS — Paper II

GATI 4 12 VIII (New Syllabus)

Time Allowed : $2\frac{1}{2}$ Hours]

[Maximum Marks : 100

At notifying A = TA me 8 = 8G PART - I DE of History at TC - Fall - I

- This Part contains two Sections, Section A and Section B. N. B.: i)
 - ii) Section - A contains Multiple Choice Questions. Answer all the 20 questions. Each question carries one mark.
 - iii) Section - B contains 15 questions. Answer any ten questions. Each question carries two marks.

SECTION - A

Choose the correct answer from the given alternatives: $20 \times 1 = 20$

1. If
$$\begin{bmatrix} x+y & x-y \\ 7 & 6 \end{bmatrix} = \begin{bmatrix} 10 & 2 \\ 7 & z \end{bmatrix}$$
, then x, y, z are

- c) 6, 6, 4
- = SQ mad: A d) T(4, 4, 6. d) el CA stumb all mi
- 2. Determine the matrix A given by

- - diagonal

b) scalar

c)

- identity.
- Two chords AB and CD of a circle intersect externally at P. If AP = 10 cm. 4. CP = 6 cm and PD = 5 cm, then PB =
 - a) 10 cm

b) 3 cm

c) 5 cm

- d) 6 cm.
- In \triangle ABC, DE is parallel to BC, AD = 4 cm, DB = 8 cm, AE = 3 cm, then EC is 5.

a) 6 cm

b) 4 cm

c) 2 cm

- d) 9 cm.
- 6. Two circles of radii 8.2 cm and 3.6 cm touch each other externally. The distance between their centres is
 - a) 4.6 cm

b) 11.8 cm

4.1 cm

- d) 1.8 cm.
- 7. In the figure, AD is the bisector of $\angle A$; then DC =

6.5 cm a)

b)

C) 4.5 cm

d) 7.5 cm.

a) 1:2

b) 16:25

c) 4:5

- d) 5:4.
- 9. The slope of the line which is parallel to the line joining the points (0, 0) and (-5, 5) is
 - a) 1

b) - 1

c) 2

- d) 2.
- 10. The value of p, given that the line $\frac{y}{2} = x p$ passes through the point (-4, 4), is
 - a) 4

b) -6

c) - 2

- d) 3.
- 11. In \triangle ABC, A(-7, -2), B(-6, -2) and C(-2, 1) are the vertices. Then the centroid of the triangle is
 - a) (-5, -1)

b) (5, 1)

c) (-1,-5)

- d) (1,5).
- 12. If x y = 3 and x + 2y = 6 are the diameters of the circle, then the centre of the circle is
 - a) (0,0)

b) (2, 2)

c) (1, -1)

- d) (4, 1).
- 13. The equation of a straight line which has the y-intercept 5 and slope 2 is
 - a) 2x + y + 5 = 0

b) 2x - y + 5 = 0

c) 2x - y - 5 = 0

d) 2x + y - 5 = 0.

$$14. \quad \frac{\sqrt{1-\sin^2\theta}}{\sin\theta} =$$

a) cot θ

b) $\frac{\sin \theta}{2}$

c) tan θ

d) $\frac{1 + \sin \theta}{\sin^2 \theta}$

20. The physically of

15.
$$\frac{\sin \theta}{\csc \theta} + \frac{\cos \theta}{\sec \theta} =$$

a) 0

b) 2

c) 1

d) cot θ.

16. $x = a \sec \theta$, $y = a \tan \theta$, then $x^2 - y^2 =$

a) 1

b) - 1

c) a2

d) - a²,

and and that there is a solution and

17. The value of sin 2 18° + sin 2 72° is

a) - 1

b) 18

c) 72

d) 1.

18. If $(1-\cos^2\theta)=\frac{3}{4}$ then $\sin\theta=$

a) $\frac{\sqrt{3}}{2}$

(1 d) (d) b) $\frac{1}{2}$

- c) 1
- x + y = 3 and x + 2y = 6 age are illumeters at the circle. Then,

19. The standard deviation of 5 values is $5\sqrt{2}$. If each value is increased by 4, then the new standard deviation is

- a) 20√4
 - √4 .b) 10√2 Le both c – ique est in unit inuit in unit in uni
- c) 5√2

d) $\frac{5\sqrt{2}}{2}$

20. The probability of selecting a queen of hearts when a card is drawn from a well shuffled pack of 52 cards is

a) $\frac{1}{52}$

b) $\frac{16}{52}$

c) $\frac{1}{1.3}$

d) $\frac{2}{52}$

Answer any ten questions:

$$10 \times 2 = 20$$

21. If
$$A = \begin{pmatrix} 3 & 7 \\ 2 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} -3 & 2 \\ 4 & -1 \end{pmatrix}$, find the matrix C if $2C = A + B$.

22. Solve:
$$\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ -1 \end{bmatrix}.$$

23. In the given figure, AB is a diameter of the circle and PT is a tangent to the circle. If PB = 2 cm, PT = 8 cm, calculate the radius of the circle.

- 24. The sides of a Δ PQR are 8 cm, 10 cm and 12 cm respectively. Three circles are drawn with centres P, Q and R each one touching the other two externally. Determine the radii of the circles.
- 25. L and M are points on sides AB and AC of a \triangle ABC. If AL = 2 cm, LB = 4 cm and LM is parallel to BC, prove that 3 LM = BC.
- 26. Prove that the points (4, 5), (6, -1) and (0, 17) are collinear.
- 27. The line joining A(-1, -2) and B(5, 6) is perpendicular to the line joining C(4, 2) and D(0, y). Find y.
- 28. Find the equation of the line cutting off intercepts $\frac{-4}{3}$ and $\frac{3}{4}$ on the X and Y-axes respectively.
- 29. Write down the equation of a line parallel to 3x 4y 5 = 0 and passing through the point (2, 3).
- 30. Prove that $\frac{\sin^4 \theta \cos^4 \theta}{\sin^2 \theta \cos^2 \theta} = 1.$
- 31. Verify that sin 90° = sin 60° cos 30° + cos 60° sin 30°.

32. When $0^{\circ} \le \theta \le 90^{\circ}$, solve the following:

 $2\cos 3\theta = 1$.

- 33. Prove that : $(\cos \theta \sin \theta)^2 + (\cos \theta + \sin \theta)^2 = 2$.
- Find the standard deviation of the first five natural numbers.
- 35. Find the probability of getting an even number when a die is thrown.

PART - II

- N. B.: i) This Part contains four Sections, Section C, Section D, Section E and Section F.
 - Section C and Section E contain 3 questions. Answer any two questions in each Section.
 - Section D and Section F contain 4 questions. Answer any three questions in each Section.
 - iv) Each question carries five marks.

SECTION - C

Answer any two questions:

 $2 \times 5 = 10$

- State and prove basic proportionality theorem.
- 37. D is the midpoint of side BC of ∆ ABC. DP bisects ∠ ADB meeting AB at P and DQ bisects ∠ ADC meeting AC at Q. Prove that PQ is parallel to BC.
- 38. In the figure, ST is parallel to QR and $\frac{PS}{SQ} = \frac{3}{5}$. Calculate the value of

- i) Area of \triangle PST Area of \triangle PQR
- ii) Area of $\triangle PQR$.

 Area of $\triangle PQR$.

to multipersolate to lated as SECTION - Digitals and to muccupated next

Answer any three questions : $\frac{1}{2}$ and $\frac{1}{2}$ and

39. If
$$A = \begin{bmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
, show that $A^2 - 7A + 10I_3 = 0$.
40. If $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} -1 & -3 \\ -4 & -4 \end{bmatrix}$ verify that $(AB)^T = B^T A^T$.

If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & -3 \\ -4 & -4 \end{bmatrix}$ verify that $(AB)^T = B^T A^T$

11. Find the variance of the following data:

Variable	10	100.6 ₀ nm	18	14	22	2
Frequency	10	7	7	15	6	5

2. A number is selected at random out of first 100 natural numbers. What is the probability that it is either a multiple of 11 or 13?

Print of the signer own warb SECTION EE and thory taligne and To many

the control lie dicked. Measure the length of the tangents and we $2 \times 5 = 10$

- 3. Prove that $\frac{1}{\sec A + \tan A} \frac{1}{\cos A} = \frac{1}{\cos A} \frac{1}{\sec A \tan A}$
- Find the area of an isosceles triangle with base 10 cm and vertical angle 47°.
- The angle of elevation of a tower at a point is 45°. After going 20 metres towards 5. the foot of the tower the angle of elevation of the tower becomes 60°. Calculate the height of the tower.

SECTION - F

Answer any three questions:

 $3 \times 5 = 15$

- 6. The vertices of a triangle are A(1,8), B(-2,4) and C(8,-5). M and N are the midpoints of AB and AC. Show that MN is parallel to BC and MN = $\frac{1}{2}$ BC.
- 7. If a line passes through the midpoint of AB where A is (3, 0) and B is (5, 4) and makes an angle 60° with X-axis, find its equation.

- Find the equation of the straight line joining the point of intersection of 48. 3x - y + 9 = 0 and 2y + x - 4 = 0 to the point of intersection of 2x + y = 4 and 2y = x + 3.
- Find the orthocentre of the triangle whose vertices are (-2, 1), (-1, -4)49. and (0, -5).

- N. B. : This Section contains 2 questions. Answer any one question.
 - ii) Each question carries ten marks.

all as party systems burnes of SECTION - Godman or burning at any

Answer any one question:

- $01 = 01 \times 1$ that it is either a multiple of 1.1 or Draw a circle of radius 3 cm. Take a point at a distance of 5.5 cm from the 50. centre of the circle. From the external point draw two tangents to the circle (using the centre of the circle). Measure the length of the tangents and verify it.
- Construct a triangle ABC in which BC = 7.5 cm, $\angle A = 55^{\circ}$ and the median 51. through A is of length 5.5 cm. Also find the length of the altitude drawn from the vertex A on BC. The negle of elecation of a tower at a point is 45°. After going 20 metres

the loss of the lower the angle of execution of the lower becauses 60°. Calcu-