B.Tech. Degree V Semester Examination December 2002

CS 504 AUTOMATA LANGUAGES AND COMPUTATION

(1999 Admissions onwards)

Time: 3 Hours

Maximum Marks: 100

Construct the DFA equivalent to the following NFA on {0, 1}. (10)

- (b) Show that if L is accepted by an NFA with E-transitions, then L is accepted by an NFA without E-transitions. (10)
- Explain the term Deterministic Finite Automaton. (a) 11 Establish the equivalence between deterministic and Non deterministic finite automata. (10)
 - Give deterministic finite automata accepting the following (b) languages over {0, 1}:
 - The set of all strings not ending in 00. (i)
 - (ii) The set of all strings without three (10) consecutive zeros.
- Define the term 'regular set'. Prove that the class of regular sets is closed under substitutions. (10)
 - Show that $\{0'1/\gcd(i,j)=1\}$ is not regular. (10)

(Turn over)

(a) (b)	State and prove Myhill-Nerode theorem. Give a decision procedure to determine if the set accept by a DFA is	(10) ed
-	· · · · · · · · · · · · · · · · · · ·	abet.
	(ii) Cofinite (a set whose complement is finite).	(10)
(a)	Explain the term context free grammar. Give a context free grammar generating the set of palindromes (strings that read the same forward and backward) over alphabet $\{0,1\}$.	
(b)	Find a CFG with no useless symbols equivalent to	` '
	$S \rightarrow AR/CA$	
		(10)
		Ì
	OR	
(a)	Explain 'language accepted by final state' and 'language accepted by empty stack' in the case of	(5)
(b)	• *	(5)
ί-,	stack for some PDA, M then L is a context free language.	(15)
(a)	Explain the basic Turing machine model. Explain how to design a Turing machine to implement proper subtraction on positive integers defined by	
	$m+n=\begin{cases} m-n & for m \geq n\\ 0 & otherwise \end{cases}$	(10)
(b)	Explain how a Turing machine can be designed to check whether an integer is prime or not. OR	(10)
	(a) (b) (a)	 (b) Give a decision procedure to determine if the set accept by a DFA is (i) The set of all strings of a given alphb (ii) Cofinite (a set whose complement is finite). (a) Explain the term context free grammar. Give a context free grammar generating the set of palindromes (strings that read the same forward and backward) over alphabet {0,1}. (b) Find a CFG with no useless symbols equivalent to \$\sigma AB/CA\$ \$B \to BC/AB\$ \$A \to a\$ \$C \to aB/b\$ OR (a) Explain 'language accepted by final state' and 'language accepted by empty stack' in the case of a PDA. (b) Show that if L is the language accepted by a empty stack for some PDA, M then L is a context free language. (a) Explain the basic Turing machine model. Explain how to design a Turing machine to implement proper subtraction on positive integers defined by \$m - n = \begin{center} m-n & for & m \geq n \to otherwise \end{center}\$ (b) Explain how a Turing machine can be designed to check whether an integer is prime or not.

∨ш.	(a)	explain the following techniques of Turing Machine construction, with examples:		
		(i) Shifting over		
	(b)	(ii) Subroutines (1) Show that if L is accepted by a Non-deterministic Turing		
	(0)	machine M,, then L is accepted by some deterministic		
		Turing machine M ₂ .		
	:			
IX.	(a)	Show that if L and \overline{L} are a pair of compalementary languages then exactly one of the following holds:		
		(i) Both L and \overline{L} are recursive.		
		(ii) Neither L or \overline{L} is recursively enumerable.		
		(iii) One of L and \overline{L} is recursively enumerable,		
		but not recursive; the other is not recursively		
·	(h)	enumerable. (I Show that it is undecidable whether a TM halts on all		
	(b)	inputs. (1		
		OR		
X	(a)	Explain with a suitable example the term 'regular grammar'.		
		Show that a language is regular if and only if it has a left		
	a.s	linear grammar. (1		
	(b)	Show that if L is a CSL, then L is accepted by some Linear Bounded Automaton (LBA). (1		
		THE POWER TRADITION (TOLY).		

**

Contd.....3.