Basic Electrical \& Electronics Engineering (EE-101, Dec-2005)

Note: Section A is compulsory. Attempt any five questions from section B \& C taking at least two questions from each part.

Section-A

1. a) Write the mathematical expression for a 50 Hz sinusoidal voltage supplied for domestic purposes at 230 V .
b) A wire carries both ac and dc current with max. value of ac 20A and 5A of ac. the frequency of resultant current is 25 Hz . Write mathematical expression for the wire current as a function of time and draw the wave shape.
c) Three 100Ω resistors are connected in star across a $440 \mathrm{~V}, 50 \mathrm{~Hz}, 3$-phase supply. One of the phases is disconnected. What will be the line current and total absorbed power?
d) Why is an iron-silicon alloy used in a transformer?
e) Why cannot a 3-phase induction motor run at synchronous speed?
f) Which losses occur in a dc machine?
g) When a resistor is placed across 230 V supply (dc) the current is 12 A . What is the value of resistor that must be connected in parallel to increase the load current to 16 A .
h) What are uses of LVDT for measurements?
i) Convert the fractional decimal number $(0.625)_{10}$ into a binary number.
j) What is field effect transistor? List its applications.

Section-B

2. (a) Give working principle of induction type energy meter.
(b) Define mutual inductance (M) and show that
$\mathrm{K}=\frac{M}{\sqrt{L_{1} L_{2}}} . \mathrm{K} \leq 1$

Where L_{1} and L_{2} are inductance of coil 1 and coil 2 respectively and K is coupling coefficient.
3. (a) Discuss principle of operation of a 3-phase induction motor. What is frequency of rotor current? Discuss.
(b) A 3 phase induction motor is wound for 4 poles and is supplied from 3 phase, 50 Hz system. Calculate (i) the synchronous speed (ii) Speed of the motor when slip is 0.04 and (iii) the rotor when the motor runs at 60 rpm .
4. (a) Discuss how you analyze series R-C circuit. Draw its phasor diagram.
(b) A series circuit consumes 7000 W when connected to $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. the voltage across the resistor is 130 V . Calculate (i) The resistance \circledR^{\circledR}, Current (I), p.f ($\cos \Phi$), capacitance (c) and impedance (z) and (ii) also write equation for $\mathrm{v}(\mathrm{t})$ and $\mathrm{i}(\mathrm{t})$.
5. (a) Discuss the temperature dependence of resistance.
(b) The filament of $60 \mathrm{~W}, 230 \mathrm{~V}$ lamp has a working temperature of $2000^{\circ} \mathrm{C}$. Take the temperature coefficient of the material to be 0.005 . Find the approximate current which flows at instant of switching on the supply to the cold lamp.

Section-C

6. (a) Define transducer. State its classifications with 4 examples of passive type transduction.
(b) What is piezoelectric transducer? Give its advantages and disadvantages.
7. (a) Discuss working principle of a P-N junction diode. Also show its characteristics and mention some of its applications.
(b) A germanium diode has a saturation current of $10^{-8} \mathrm{~A}$. Calculate for the junction current for a forward bias of 0.4 . Volts and $300^{\circ} \mathrm{K}$.
8. (a) What is an integrated circuit? Why it is so commonly used? Discuss.
(b) Explain the terms: CMMR and output offset voltage.
9. (a) What is T-flip flop? Give its symbol and draw wave from the flip flop.
(b) What is meant by IC-Timer? How is IC-555 used to generate square wave form? Explain.
