SECTION - A

VERY SHORT ANSWER TYPE QUESTIONS

 $10 \times 2 = 20$

(Attempt 'ALL' questions. Each question carries '2' marks)

- 1. Find the inverse of the function $f:(0,\infty)\to R$ defined by $f(x)=\log_2 x$.
- 2. Find domain of the function $\frac{1}{(x^2-1)(x+3)}$.
- If the position vectors of A, B, C are 2i + j k, 2j + 2k 4i, 6i 3j 13k and
 AB = λ AC, find λ.
- Find the vector equation of the line passing through the point 2i + j + 3k and parallel to the vector 4i + 3j k.
- 5. Find the area of the triangle whose adjacent sides are $3\mathbf{I} + 4\mathbf{I} = 5\mathbf{I} + 7\mathbf{I}$
- 6. Show that $\frac{1}{\sin 10^{\circ}} \frac{\sqrt{3}}{\cos 10^{\circ}} = 4$.
- 7. If $A+B+C=180^{\circ}$, prove that $\tan A + \tan B + \tan C = \tan A \tan B \tan C$
- 8. If $x = \log \left[\cot\left(\frac{\pi}{4} + \theta\right)\right]$, prove that $\cosh x = \sec 2\theta$.
- 9. Show that $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$.
- 10. Find the square root of 3 + 4i

SECTION - B

SHORT ANSWER TYPE QUESTIONS

 $5 \times 4 = 20$

(Attempt any 'FIVE' questions. Each question carries '4' marks)

- 11. Show that the vectors 3a 2b 4c, -a + 2c, -2a + b + 3c are linearly dependent, where a, b, c are non-coplanar vectors.
- 12. If $\mathbf{a} = (4, 3, 5)$ is the centre of the sphere and the sphere passes through the point $\mathbf{b} = (-1, -1, 2)$ then find the equation of the sphere.

- 13. If $\cot A + \cot B + \cot C = \sqrt{3}$ then show that ABC is an equilateral triangle.
- 14. Solve the equation of $1 + \sin^2 \theta = 3 \sin \theta \cos \theta$
- **15.** If $Cos^{-1}x + Cos^{-1}y + Cos^{-1}z = \pi$, prove that $x^2 + y^2 + z^2 + 2xyz = 1$.
- **16.** If $\sin \theta = \frac{a}{b+c}$, then show that $\cos \theta = \frac{2\sqrt{bc}}{b+c} \cos \frac{A}{2}$
- **17.** Show that $\cos 6\theta = 32 \cos^6 \theta 48 \cos^4 \theta + 18 \cos^2 \theta 1$

SECTION - C

LONG ANSWER TYPE QUESTIONS

 $5 \times 7 = 35$

(Attempt any 'FIVE' questions. Each question carries '7' marks)

18. f from R into R is defined as f(x) = x, if x > 2 = 5x - 2, if $x \le 2$

Show that f is onto but not one one

- **19.** Show that $x^n y^n$ is divisible by x y for all $n \in N$ by way of mathematical induction.
- 20. If a, b, c are three vectors, prove that
 - i) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{c} \cdot \mathbf{a}) \mathbf{b} (\mathbf{c} \cdot \mathbf{b}) \mathbf{a}$
 - ii) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$
- **21.** If $A+B+C=180^\circ$, then prove that $\sin^2 A + \sin^2 B \sin^2 C = 2 \sin A \sin B \cos C$.
- **22.** Show that $\frac{ab r_1 r_2}{r_3} = \frac{bc r_2 r_3}{r_1} = \frac{ca r_3 r_1}{r_2} = r$.
- 23. A pillar of 10 metres height is mounted on a spire. From a point on the level ground, the angles of elevation of the top and foot of the pillar are 75° and 45° respectively. Find the height of the spire.
- **24.** Solve $x^9 x^5 + x^4 1 = 0$.