SECTION - A

10 × 2 = 20

VERY SHORT ANSWER TYPE QUESTIONS

Answer All questions. Each question carries 2 marks.

- 1. If $f = \{(4, 5), (5, 6), (6, -4)\}$ and $g = \{(4, -4), (6, 5), (8, 5)\}$ then find fg.
- 2. Find the domain, range of $\frac{x^2-4}{x-2}$.
- 3. Is the triangle formed by the vectors $3\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$, $2\mathbf{i} 3\mathbf{j} 5\mathbf{k}$ and $-5\mathbf{i} 2\mathbf{j} + 3\mathbf{k}$ equilateral?
- 4. If the vectors $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = 4\mathbf{j} + 3\mathbf{j} + 4\mathbf{k}$ and $\mathbf{c} = \mathbf{i} + \alpha \mathbf{j} + \beta \mathbf{k}$ are linearly dependent, and $|\mathbf{c}| = \sqrt{3}$, then show that $\alpha = \pm 1$ and $\beta = 1$.
- 5. Find the angles made by the straight line through the points (1, -3, 2) and (3, -5, 1) with the co-ordinate axes.
- **6.** If ABCD is a cyclic quadrilateral then prove that $\cos A + \cos B + \cos C + \cos D = 0$
- 7. If $\cos \theta = \frac{1}{4}$ and $270^{\circ} < \theta < 360^{\circ}$, then find the value of $\tan \theta/2$.
- **8.** Prove that $[\cosh x \sinh x]^n = \cosh(nx) \sinh(nx)$.
- 9. Prove that $a(b \cos C c \cos B) = b^2 c^2$.
- **10.** The points P, Q denote the complex numbers z_1 , z_2 in the Argand diagram. O is the origin. If $z_1 \overline{z_2} + \overline{z_1} z_2 = 0$, show that $\angle POQ = 90^\circ$.

SECTION - B

 $5 \times 4 = 20$

SHORT ANSWER TYPE QUESTIONS

Attempt any 5 questions. Each question carries 4 marks.

- If a, b, c are noncoplanar then show that the vectors a 3b + 2c, 2a 4b c,
 3a + 2b c are linearly independent.
- 12. Let a and b be vectors, satisfying | a| = | b| = 5 and (a, b) = 45°. Find the area of the triangle having a 2b and 3a + 2b as adjacent sides.
- 13. If $A + B = 45^\circ$, prove that $(\cot A 1)(\cot B 1) = 2$ and hence deduce that $\cot 22 \frac{1}{2}^\circ = \sqrt{2} + 1$.

- **14.** Solve $\sqrt{2} (\sin x + \cos x) = \sqrt{3}$.
- **15.** Show that $2 Sin^{-1} \left(\frac{3}{5} \right) Cos^{-1} \left(\frac{5}{13} \right) = Cos^{-1} \left(\frac{323}{325} \right)$.
- **16.** Show that $\cot A + \cot B + \cot C = \frac{a^2 + b^2 + c^2}{4 \Delta}$
- 17. Expand $\sin 5\theta$ in powers of $\sin \theta$, $\cos \theta$.

SECTION - C

 $5 \times 7 = 35$

LONG ANSWER TYPE QUESTIONS

Attempt any 5 questions. Each question carries 7 marks.

- **18.** If $f: A \to B$, $g: B \to A$ are two functions such that $g \circ f = I_A$ and $f \circ g = I_B$ then prove that $f: A \to B$ is a bijection and $f^{-1} = g$.
- 19. Using the Mathematical Induction theorem, prove the following for $n \in \mathbb{N}$. $\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots \text{ upto } n \text{ terms} = \frac{n}{24} [2n^2 + 9n + 13].$
- **20.** If A = (1, -2, -1), B = (4, 0, -3), C = (1, 2, -1), D = (2, -4, -5), then find the distance between AB and CD.
- **21.** In $\triangle ABC$ prove that $\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} = 1 + 4 \sin \left(\frac{\pi A}{4}\right) \sin \left(\frac{\pi B}{4}\right) \sin \left(\frac{\pi C}{4}\right)$.
- 22. If p_1, p_2, p_3 are the lengths of the altitudes from the vertices of $\triangle ABC$ to the opposite sides then, prove that

i)
$$\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = \frac{1}{r}$$
 ii) $\frac{1}{p_1} + \frac{1}{p_2} - \frac{1}{p_3} = \frac{1}{r_3}$ iii) $p_1 p_2 p_3 = \frac{(abc)^2}{8R^3} = \frac{8 \Delta^3}{abc}$

- 23. On end of the ladder is in contact with a wall and the other end is in contact with the level ground making an angle ' α '. When the foot of the ladder is mood to a distance a cm, the end in contact with the wall slides through b cm and the angle made by the ladder with the level ground is now β . Show that $a = b \tan \left(\frac{\alpha + \beta}{2}\right)$.
- 24. If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$, then show that i) $\cos 3 \alpha + \cos 3 \beta + \cos 3 \gamma = 3 \cos (\alpha + \beta + \gamma)$
 - ii) $\sin 3 \alpha + \sin 3 \beta + \sin 3 \gamma = 3 \sin (\alpha + \beta + \gamma)$