\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-I Remedial examination March 2009

Subject code: 110008
 Subject Name: MATHS - I

Time: 10:30am To 1:30pm
Date: 18/03/2009 Instructions:

Total Marks: 70

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1
(a) Do as directed (Each of one mark)
i. State Lagrange's Mean value theorem. What does it geometrically mean?.
ii. Define critical point. Does local extremum exist at $x=0$ to the function $y=|x|$, however it is not differentiable at $x=0$?.
iii. For which values of p does the series $\sum_{n=1}^{\infty} \frac{n+1}{n^{p}}$ is convergent.
iv. Find the radius of convergence for the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n+2}$
v. Can we solve the integral $\int_{0}^{5} \frac{1}{(x-2)^{2}} d x$ directly?. Give the reason.
vi. Find the directional derivative of the function $f(x, y)=a x+b y ; a, b$ are constants, at the point $(0,0)$ which makes an angle of 30° with positive x-axis.
vii. Evaluate the integral $\int_{0}^{\pi / 1-\sin \theta} \int_{0}^{\pi} r^{2} \cos \theta d r d \theta$
viii. Find the constants a, b, c so that
$\bar{F}=(x+2 y+a z) i+(b x-3 y-z) j+(4 x+c y+2 z) k$ is irrotational
(b) Attempt the following
i. If $|x-1|<\frac{1}{10}$, prove that $\left|x^{3}+1\right|<0.331$
ii. It can be shown that the inequalities $1-\frac{x^{2}}{6}<\frac{x \sin x}{2-2 \cos x}<1$ hold for all values of x close to zero. What, if anything, does
this tell you about $\lim _{x \rightarrow 0} \frac{x \sin x}{2-2 \cos x}$?
iii. Prove that $f(x)=x-[x], x \in R$ is discontinuous at all integral points.
(a) Attempt the following questions
i. Evaluate $\int_{2}^{3}(x-2) d x$ by using an appropriate area formula.
ii. State First Fundamental Theorem of Calculus. Find the value of c by using MVT for integral, for the function

$$
f(x)=\sin x, x \in\left[0, \frac{\pi}{2}\right]
$$

iii. Expand $\sin \left(\frac{\pi}{4}+x\right)$ in powers of x. Hence find the value of $\sin 44^{\circ}$.
(b) Attempt the following questions
i. If $x>y>0$ then prove by LMVT that $\frac{1}{1+x^{2}}<\frac{\tan ^{-1} x-\tan ^{-1} y}{x-y}<\frac{1}{1+y^{2}}$. Hence deduce that $\frac{\pi}{4}+\frac{3}{25}<\tan ^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6}$.
ii. Can the Rolle 's Theorem for $f(x)=|x|, x \in[-1,1]$ applied?
iii. Define stationary point. Suppose that a manufacturing firm produces x number of items. The profit function of the firm is given by $P(x)=-\frac{x^{3}}{3}+729 x-2500$. Find the number of items that the firm should produce to attain maximum profit.

OR

(b) Attempt the following questions
i. State Rolle 's Theorem. Show that this theorem cannot be applied for $f(x)=[x], x \in[0,2]$ however $f^{\prime}(x)=0$ for all $x \in(1,2)$.
ii. Verify Cauchy's Mean Value theorem for $\frac{1}{x}$ and

$$
\frac{1}{x^{2}}, \forall x \in[a, b], a>0 .
$$

iii. What is the necessary condition for the function to have a local extremum?. A soldier placed at a point $(3,4)$ wants to shoot the fighter plane of an enemy which is flying along the curve $y=x^{2}+4$ when it is nearest to him. Find such the distance.
Q. 3
(a) Attempt the following questions
i. Use LMVT to show that if $x>0$ and $0<\theta<1$ then

$$
\log _{10}(x+1)=x \frac{\log _{10} e}{1+\theta x}
$$

ii. Is $\int_{4}^{\infty} \frac{\sin ^{2} x}{\sqrt{x}(x-1)} d x$ convergent?
iii. Check the convergence of $\int_{0}^{3} \frac{\cos 3 x}{x^{5 / 2}} d x$.
(b) Test the convergence of the following series
i. $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots \infty$.
ii. $\quad \sum_{n=1}^{\infty} \frac{n^{p}}{\sqrt{n+1}+\sqrt{n}}$.
iii. $\quad \sum_{n=1}^{\infty} \frac{n^{3}+2}{2^{n}+2}$.

02
iv. $\quad \sum_{n=1}^{\infty} n e^{-n^{2}}$

OR

Q. 3
(a) Attempt the following questions
i. State Cauchy's Mean Value Theorem. Verify it for $f(x)=\log x, g(x)=\frac{1}{x}, x \in[1, e]$, and find the value of c.
ii. Check the convergence of $\int_{4}^{\infty} \frac{3 x+5}{x^{4}+7} d x$.
iii. Find the area between the curve $y^{2}=\frac{x^{2}}{1-x^{2}}$ and its asymptote.
(b) Check the convergence of the following series
i. $\quad \sum_{n=1}^{\infty} \frac{4^{n}+5^{n}}{6^{n}} . \quad$ ii. $\quad \sum_{n=1}^{\infty}\left(\frac{n+1}{n+2}\right)^{n} x^{n}$
iii. $\quad 1-2 x+3 x^{2}-4 x^{3}+\ldots \infty, \quad 0<x<1$
iv. $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n-1} x^{n+1}$
Q. 4
(a) Attempt the following questions
i. If $u=\sin ^{-1}\left(\frac{x^{1 / 4}+y^{1 / 4}}{x^{1 / 5}+y^{1 / 5}}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{20}$.
ii. If $u=f(x-y, y-z, z-x)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
iii. Find the extreme values of $x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$.
(b) Attempt the following questions
i. Find the area common to the cardioids $r=a(1-\cos \theta)$ and
$r=a(1+\cos \theta)$.
ii. Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d A$, by changing the variables, where R
is the region lying in the first quadrant and bounded by the hyperbolas $x^{2}-y^{2}=1, x^{2}-y^{2}=9, x y=2$, and $x y=4$.
Q. 4
(a) Attempt the following questions
i. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, prove that

02

$$
\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=-\frac{9}{(x+y+z)^{2}} .
$$

ii. If $u=f\left(x^{2}+2 y z, y^{2}+2 z x\right)$, prove that

$$
\left(y^{2}-z x\right) \frac{\partial u}{\partial x}+\left(x^{2}-y z\right) \frac{\partial u}{\partial y}+\left(z^{2}-x y\right) \frac{\partial u}{\partial z}=0 .
$$

iii. The temperature at any point (x, y, z) in space is $T=400 x y z^{2}$. Find the highest temperature on the surface of the unit sphere $x^{2}+y^{2}+z^{2}=1$ by the method of Lagrange's multipliers.
(b) Attempt the following questions
i. Find the volume generated by the revolution of the loop of the curve $y^{2}(a+x)=x^{2}(3 a-x)$ about the x-axis.
ii. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}} d y d x$, by changing into polar coordinates.
Q. 5
(a) Attempt the following questions
i. Evaluate $\iint_{R} x y d A$, where R is the region bounded by x-axis, ordinate $x=2 a$ and the curve $x^{2}=4 a y$.
ii. Evaluate $\iiint_{D} \sqrt{x^{2}+y^{2}} d V$, where D is the solid bounded by the surfaces $x^{2}+y^{2}=z^{2}, z=0, z=1$.
(b) Attempt the following questions
i. Find the directional derivative of the divergence of $\bar{F}(x, y, z)=x y i+x y^{2} j+z^{2} k$ at the point $(2,1,2)$ in the direction of the outer normal to the sphere $x^{2}+y^{2}+z^{2}=9$.
ii. Prove that $r^{n} \bar{r}$ is irrotational.
(c) Attempt the following questions
i. Find the work done when a force
$\bar{F}=\left(x^{2}-y^{2}+x\right) i-(2 x y+y) j$ moves a particle in the $x y$ plane from $(0,0)$ to $(1,1)$ along the parabola $x^{2}=y$?.
ii. Use divergence theorem to evaluate
$\iint_{S}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d z d x\right)$, where S is the closed
surface consisting of the cylinder $x^{2}+y^{2}=a^{2}$ and the circular discs $z=0$ and $z=b$.
(a) Attempt the following questions
i. Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d A$ by changing the order of integration. 02
ii. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d z d y d x$.

03
(b) Attempt the following questions
i. The temperature at any point in space is given by $T=x y+y z$ $+z x$. Determine the derivative of T in the direction of the vector $3 i-4 k$ at the point $(1,1,1)$.
ii. Show that $\bar{F}=2 x y z i+\left(x^{2} z+2 y\right) j+x^{2} y k$ is irrotational and find a scalar function ϕ such that $\bar{F}=\operatorname{grad} \phi$.
(c) Attempt the following questions
i. Find $\int_{C} \bar{F} \cdot \overline{d r}$ where $\bar{F}=\frac{y i-x j}{x^{2}+y^{2}}$ and C is the circle 02
$x^{2}+y^{2}=1$ traversed counterclockwise.
ii. Evaluate the surface integral $\iint_{S} c u r l \bar{F} \cdot \overline{d s}$ by using Stoke's

03
theorem, where S is the part of the surface of the parabobloid $z=1-x^{2}-y^{2}$, for which $z \geq 0$ and $\bar{F}=y i+z j+x k$.

