Code: D-23 / DC-23 Subject: MATHEMATICS - II

Time: 3 Hours Max. Marks: 100
NOTE: There are 11 Questions in all.
Question 1 is compulsory and carries 16 marks. Answer to \mathbf{Q}. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
Answer any THREE Questions each from Part I and Part II. Each of these questions carries 14 marks.
Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or best alternative in the following: (2x8)
a. If $z_{1}=r_{1}\left(\operatorname{Cos} \theta_{1}+i \operatorname{Sin} \theta_{1}\right), z_{2}=r_{2}\left(\operatorname{Cos} \theta_{2}+i \operatorname{Sin} \theta_{2}\right)$ then $z_{1} z_{2}$ is equal to
(A) $\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)\left\{\operatorname{Cos}\left(\theta_{1}+\theta_{2}\right)+\mathrm{i} \operatorname{Sin}\left(\theta_{1}+\theta_{2}\right)\right\}$.
(B) $\mathrm{r}_{1} \mathrm{r}_{2}\left\{\operatorname{Cos}\left(\theta_{1}+\theta_{2}\right)+\mathrm{i} \operatorname{Sin}\left(\theta_{1}+\theta_{2}\right)\right\}$.
(C) $r_{1} r_{2}\left\{\operatorname{Cos}\left(\theta_{1} \theta_{2}\right)+i \operatorname{Sin}\left(\theta_{1} \theta_{2}\right)\right\}$.
(D) $\mathrm{r}_{1} \mathrm{r}_{2}\left\{\operatorname{Cos}\left(\theta_{1}-\theta_{2}\right)+\mathrm{i} \operatorname{Sin}\left(\theta_{1}-\theta_{2}\right)\right\}$.
b. If ω is cube root of unity then $1+\omega+\omega^{2}$ is equal to
(A) 0 (B) 1 .
(C) -1. (D) 3 .
c. The roots of $x^{2}-x-12=0$ are
(A) 2, 3. (B) 3,2 .
(C) 4, -3. (D) 4, 3 .
d. If $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$ then $A B$ is equal to
(А) $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.(B) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
(C) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. (D) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.
e. If A and B are invertible matrices of the same size then $(A B)^{-1}$ is equal to
(A) AB. (B) BA.
(C) $\mathrm{B}^{-1} \mathrm{~A}^{-1}$. (D) $\mathrm{A}^{-1} \mathrm{~B}^{-1}$.
f. If A and B are the points $(3,4,5)$ and $(6,8,9)$ then the vector $\overrightarrow{A B}$ is
(A) $3 \overrightarrow{\mathrm{i}}+4 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}}$.
(B) $3 \overrightarrow{\mathrm{i}}+4 \overrightarrow{\mathrm{j}}$.
(C) $3 \vec{i}-4 \vec{j}-4 \vec{k}$.
(D) $3 \vec{i}-4 \vec{j}$.
g. The function $f(x)=\operatorname{Sin} x$ is
(A) non periodic. (B) periodic with period π.
(C) periodic with period 2π. (D) periodic with period $\pi / 2$.
h. The Laplace transform of $\operatorname{Sinh}(a t)$ is
(A) $\frac{1}{\mathrm{~s}^{2}-\mathrm{a}^{2}}$. (B) $\frac{\mathrm{a}}{\mathrm{s}^{2}-\mathrm{a}^{2}}$.
(C) $\frac{\mathrm{s}}{\mathrm{s}^{2}+\mathrm{a}^{2}}$. (D) $\frac{\mathrm{s}}{\mathrm{s}^{2}-\mathrm{a}^{2}}$.

PART I

Answer any THREE Questions. Each question carries 14 marks.

Q. 2 a. If z is any complex number and ${ }_{\mathrm{z}}$ is its complex conjugate then show that $\mathrm{z} \overline{\mathrm{z}}=|\mathrm{z}|^{2}$.
b. Find the square root of the complex number $3+4 i$. (7)
Q. 3 a. If $z=\operatorname{Cos} \theta+i \operatorname{Sin} \theta$ then find $z^{n}+\frac{1}{z^{n}}$.
b. If $a_{r}=\operatorname{Cos}\left(\pi / 2^{r}\right)+i \operatorname{Sin}\left(\pi / 2^{r}\right) r=1,2,3, \ldots \ldots$ then show that $a_{1} a_{2} a_{3} \ldots \operatorname{adinf}=-1$.
Q. 4 a. If a square matrix A is invertible then show that A^{T} (transpose of A) is also invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .(7)$
b. Compute the inverse of the matrix $\mathrm{A}=\left(\begin{array}{ccc}3 & -4 & 2 \\ 0 & 5 & 9 \\ -4 & 8 & 1\end{array}\right)$. (7)
Q. 5 a. Evaluate $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega^{2} & 1 & \omega \\ \omega & \omega^{2} & 1\end{array}\right|$ where ω is a complex cube root of unity. (7)
b. Show without evaluating that determinant $\left|\begin{array}{lll}1 & x & y+z \\ 1 & y & x+z \\ 1 & z & x+y\end{array}\right|=0 \quad$. (7)
Q. 6 a. Find the position vector of a point which divides the line joining two given points in three dimensional space. (7)
b. Show that the vectors $2 \vec{i}-\vec{j}+\vec{k}, \vec{i}-3 \vec{j}-5 \vec{k}$ and $3 \vec{i}-4 \vec{j}-4 \vec{k}$ form the sides of a right angled triangle. (7)

PART II

Answer any THREE Questions. Each question carries 14 marks.
Q. 7 a. State Cayley Hamilton Theorem and verify it for the square matrix $\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$. (7)
b. Show that the system of equations
$2 x-3 y+z=0$
$x+2 y-3 z=0$
$4 x-y-2 z=0$
has only the trivial solution. (7)
Q. 8 Find the Fourier Series for the function, $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<\mathrm{x}<2 \pi$. (14)
Q. 9 a. Distinguish between even and odd functions. Give one example for each of these functions. (7) b. Forces $2 \vec{i}+7 \vec{j}, 2 \vec{i}-5 \vec{j}+6 \vec{k},-\vec{i}+2 \vec{j}-\vec{k}$ act on a point P having position vector $4 \vec{i}-3 \vec{j}-2 \vec{k}$. Find the vector moment of the resultant of three forces acting at P about the point Q whose position vector is $6 \vec{i}+\vec{j}-3 \vec{k}$.
Q. 10 a. Define Laplace transform of a function. Obtain the Laplace transform of Cosh (at). (7) b. Find the inverse Laplace transform of $\frac{s-1}{s^{2}-6 s+25}$. (7)
Q. 11 a. Solve the differential equation $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+12 y=0$
b. Solve by using Laplace transform, the differential equation $\frac{d^{2} y}{d t^{2}}+4 y=\sin t, y(0)=1, y^{\prime}(0)=0$.

