

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007 ANALOG ELECTRONIC CIRCUIT

SEMESTER - 4

				and the second second		
Time .	3 Hours]		4.00			[Full Marks: 70
IIIIe:	o noms j					L T CHE MACTION

GROUP - A

(Multiple Choice Type Questions)

Cho	ose th	ne correct alternatives for any t	en of th	e iollowing:	10	\times 1 = 10		
i)	Satı	Saturation region operation of a BJT implies						
	a)	base-emitter junction forw	ard bia	ased, base-col	lector junction	ı reverse		
	b)	base-emitter junction forw	ard bia	sed, base-coll	ector junction	forward		
	c)	base-emitter junction reverse	e biasec	l, base-collector	junction rever	se biased		
	d)	none of these.		X				
ij)		differential amplifier has the discommon mode gain is	fferentia	al gain of 100.	If its CMRR = :	240, then		
	a)	0.24	b)	0.417				
	c)	24000	d)	1.				
ш)`		In an amplifier, if conduction is during the cycle from 0° to 9° and again from 180° to 270°, the amplifier will be termed as						
	a)	Class A	b)	Class B				
	c)	Class C	d)	Class AB.				
iv)	The	ermal runaway in a transistor b	iased ii	n the active regi	on is due to			
1 · · ·	a)	heating of the transistor	-					
	b)	change in β which increases	with te	mperature				
	c)	base emitter voltage which o	lecrease	es with rise in t	emperature			
	d)	change in reverse collector s	aturatio	on due to rise i	n temperature.			

1.

v) The value of V₀ is given for the following circuit by

a) $-3V_1 + 2V_2$

- b) $-3V_{2}$
- c) $1.5 V_2 2.55 V_1$
- d) $2V_2 3V_1$.

vi) The circuit figure shown below uses an ideal Op-Amp. For small positive values of V_1 , the circuit works as

- a) a half-wave rectifier
- b) a differentiator
- c) a logarithmic amplifier

the evene from 0" to ST

- d) an exponential amplifier.
- vii) An instrumentation amplifier
 - a) is a differential amplifier
 - b) has a gain less than 1
 - c) has very high output impedance
 - d) has low CMRR.

b) th c) th d) it ix) A class	e gives better stability			•
b) th c) th d) it ix) A class	gives better stability			
c) th d) it ix) A class		e Tarry		
d) it	ne circuit needs a small d.c. ve	oltage		
ix) A class	ne biasing circuit then needs l	ess nu	mber of resistors	
	gives a distortionless output.			
power o	B push-pull power amplifie	r has	an a.c. output of 10	watts. The d.c.
	drum from the power supply u	ınder i	deal condition is	
a) 10	0 watts	b)	12.75 watts	
c) 1	5 watts	dj	20 watts.	
x) An idea	I regulated power supply shou	ıld hav	e regulation which is	
a) m	aximum	b)	50%	
c) ze	ero () valar () seek ()	d)	75%.	Ì
xi) Mutivib	rators			
a) ge	enerate square wave			
b) co	onvert sine to square wave			
c) co	onvert triangular to sine wave			
d) co	nvert triangluar to square way	ve.		
xii) Can we	use a VCO as a function gene	rator ?	?	
a) Ye	an da sa an			
b) No				
c) De	epends upon the kind of VCO			
d) Ca	annot say.	the state of		
08-(I)-B				

24508-(I)-B

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Calculate the output voltage of the circuit, shown below where $V_1 = 40$ mV and $V_2 = 20$ mV.

- What are the differences between series and shunt regulators? Draw a circuit of a shunt regulator and explain its operation.
- 4. a) What do you mean by 'biasing'?
 - b) Draw and explain any one type of biasing arrangement and determine its stability factor.
- Explain the differences between constant current bias and current mirror.
- 6. What is a multivibrator? Explain the operation of a monostable multivibrator and draw the output voltage waveform.

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

7. a) What is the significance of CMRR in differential amplifier?

. 10 - 10

3

- b) With the circuit diagram, discuss the operation of an instrumentation amplifier and derive its gain equation. Discuss its merit and application.
- 8. a) Describe the function of an Op-Amp on (i) an inverter, (ii) an adder, (iii) an integrator (iv) a differentiator and (v) an amplifier.
 - b) What are the desirable properties of an ideal Op-Amp?

5

9.	a)	In what respects Class B Push-Pull amplifier configuration better than a Class A
	*	Push-Pull Amplifier? What is major drawback of Class B operation and how is
	-	this remedied?
	b)	Prove that the maximum efficiency of class B amplifier is 78.5% .
	c)	What is the function of tuned amplifier?
1 0 .	a)	Draw the circuit diagram of a voltage to current converter (grounded load) and
		explain its operation.
	b)	Draw the circuit arrangement and explain the operration of a Schimdt trigger
•		circuit.
	c)	Give internal block arrangement of 555 and explain function of each block.
11.	Writ	te short notes on any <i>three</i> of the following: 3×5
: , , ,	a)	Logarithmic amplifier
	b)	PLL
	c)	Switched mode power supply
	d)	Precision rectifier
	e)	High frequency model of transistor.