Total No. of Questions-12]

S.E. (Production & Production Sandwich)

(First Semester) EXAMINATION, 2011

MATERIAL SCIENCE

(2008 **PATTERN**)

Time : Three Hours

Maximum Marks : 100

- **N.B.** :- (i) Answer three questions from each Section.
 - (*ii*) Answers to the two sections should be written in separate answer-books.
 - (iii) Neat diagrams should be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (vi) Assume suitable data, if required.

SECTION I

1.	(a)	Derive the expression for critical resolved shear stress of a
		single crystal. [4]
	(<i>b</i>)	Distinguish between cold working and hot working. [4]
	(c)	Show the following planes and directions in a cubic cell : [4]
		(100), (101)
	(d)	What is composite material ? Explain its basic types with minimum
		one example. [6]

P.T.O.

- (a) State various imperfections in crystals. Explain point defect in detail. [4]
 - (b) What is strain hardening ? Explain the variations in mechanical properties with a graph. [5]
 - (c) What are the mechanisms of plastic deformation ? Explain. [4]
 - (d) What is steel ? Explain classification of steels based on % carbon with its mechanical properties and minimum one use of each type.
 [5]

3.	(<i>a</i>)	Write a short note on Microhardness tester.	[4]
	(b)	Draw self-explanatory diagram for the following :	[4]
		(<i>i</i>) S-N diagram for low carbon steel	
		(ii) Stress-strain diagram for Cu.	

- (c) Write a short note on magnetic particle test. [5]
- (d) FCC metals are more ductile than BCC metal. Explain. [3]

Or

- 4. (a) Suggest suitable hardness tester for the following applications and explain in brief : [9]
 - (1) Gray cast Iron plate
 - (2) Razor blade
 - (3) Ferrite phase in steel

[4062]-134

- Explain X-ray radiography with neat diagram, advantages, (*b*) disadvantages and application. [4]
- (c)Write a short note on Brinell hardness tester. [3]
- The atomic radii of Al is 0.143 nm and Si is 0.117 nm respectively. 5. (a)Is it possible to form solid solution ? Explain. [4]
 - *(b)* Undercooling is necessary for pure metals. Explain. [2]
 - What are the uses of eutectic alloys. [2](c)
 - (d)Two materials A and B are having 100% solubility in each other in liquid as well as in solid phase. Plot an equilibrium diagram from the given data and discuss slow cooling of 35% alloy from its liquidus temperature to room temperature.

Wt. of B	Liquidus	Solidus
	Temperature °C	Temperature °C
0	1084	1084
20	1200	1165
40	1275	1235
60	1345	1310
80	1440	1380
100	1455	1455 [8]
	3	P.T.O.

[4062]-134

- 6. (a) What is Gibbs phase rule ? Explain it with reference to cooling cure for eutectic alloy. [4]
 - (b) What do you understand by non-equilibrium cooling. What are its effects on eutectic transformation ? [4]
 - (c) Define the following : [2]
 - (1) Phase
 - (2) Solid Solution.
 - (d) Draw an equilibrium diagram for materials having no solubilityin liquid as well as in solid state. [3]
 - (e) What is coring ? Explain the factors responsible for coring. [3]

SECTION II

- 7. (a) Is grain refinement is strengthening Mechanism ? Explain in brief.[4]
 - (b) Explain with neat diagram working and principle of Resistance pyrometer. [5]
 - (c) Strengthening by precipitation is not possible for every alloy.Explain. [4]
 - (d) Explain the principle and working of total radiation pyrometer. [5]

		Or	
8.	(<i>a</i>)	Write short notes on :	[16]
		(i) Thermocouples	
		(ii) Martensitic transformation	
		(iii) Age hardening	
		(iv) Disappearing filament pyrometer	
	(<i>b</i>)	What is Hall-Petch equation ?	[2]
9.	(<i>a</i>)	Write short notes on :	[8]
		(i) Physical vapour deposition(ii) Thermal spray coating	
	(<i>b</i>)	Corrosion can be controlled by controlling the atmosph	nere.
		Explain.	[4]
	(<i>c</i>)	Explain cathodic protection.	[4]
		Or	
10.	(<i>a</i>)	Design of component can prevent corrosion of metal ? Exp	plain
		with examples.	[6]
	(<i>b</i>)	Explain electroplating.	[4]
	(<i>c</i>)	Write a short on anodising.	[4]
	(d)	What is anodic coating ?	[2]
[4062	2]-134	5 P	.Т.О.

11.	<i>(a)</i>	What is powder metallurgy ? Compare its advantages	and
		disadvantages over other conventional processes.	[6]
	(<i>b</i>)	Explain chemical processes of powder manufacturing.	[4]
	(<i>c</i>)	Define the following :	[2]
		(1) Apparent density	
		(2) Green strength	
	(d)	What is sintering ? Explain its stages.	[4]
		Or	
12.	Write	e short notes on :	[16]
	(1)	Manufacturing of cemented carbides	
	(2)	Manufacturing of self-lubricating bearing.	
	(3)	Mechanical processes in powder manufacturing (min. 3 meth	nods)

(4) Compaction process.