SOLUTIONS \& ANSWERS FOR AIPMT MAINS-2010
 VERSION - A

[PHYSICS, CHEMISTRY \& BIOLOGY]

1. A thin circular ring of mass m and radius r is rotating about its axis with constant --------

Ans: $\frac{M \omega}{(M+2 m)}$
Sol: $L=I \omega=I^{\prime} \omega^{\prime}$

$$
\begin{aligned}
& \Rightarrow \omega^{\prime}=\frac{\mathrm{I} \omega}{\mathrm{I}^{\prime}}=\frac{\mathrm{MR}^{2} \omega}{(\mathrm{M}+2 \mathrm{~m}) \mathrm{R}^{2}} \\
& =\frac{\mathrm{M} \omega}{(\mathrm{M}+2 \mathrm{~m})}
\end{aligned}
$$

2. From a circular disc of radius R and mass $9 \mathrm{M}, \mathrm{a}$ small disc of mass M and radius $R / 3$ is removed concentrically \qquad

Ans: $\frac{40}{9} \mathrm{MR}^{2}$

Sol: $\quad I_{1}=\frac{1}{2} .(9 M) R^{2}=\frac{9 M R^{2}}{2}$

$$
\mathrm{I}_{\mathrm{C}}=\frac{1}{2} \cdot \mathrm{M}\left(\frac{\mathrm{R}}{3}\right)^{2}=\frac{\mathrm{MR}^{2}}{18}
$$

$$
\mathrm{I}=\mathrm{I}_{1}-\mathrm{I}_{\mathrm{C}}=\frac{9 \mathrm{MR}^{2}}{2}-\frac{\mathrm{MR}^{2}}{18}
$$

$$
=\frac{(81-1) \mathrm{MR}^{2}}{18}=\frac{80}{18} \mathrm{MR}^{2}
$$

$$
=\frac{40}{9} \mathrm{MR}^{2}
$$

3. A particle of mass M starting from rest undergoes uniform acceleration--------

Ans: $\frac{1}{2} \frac{\mathrm{MV}^{2}}{\mathrm{~T}}$

Sol: $\quad A_{V}$ Power $=\frac{\Delta K E}{T}=\frac{1}{2} \frac{M V^{2}}{T}$
Instantaneous power $=\frac{\mathrm{MV}^{2}}{\mathrm{~T}}$. It is presumed that the question is for average power and not instantaneous power
4. A solid cylinder and a hollow cylinder, both of the same mass and same external diameter

Ans: Solid cylinder
Sol: $\quad I_{\text {solid }}<$ Ihollow
$\therefore \mathrm{a}_{\text {solid }}>\mathrm{a}_{\text {hollow }}$
\Rightarrow Solid cylinder will reach bottom first.

$$
\left(\Theta a=\frac{g \sin \theta}{\left(1+\frac{K^{2}}{R^{2}}\right)}\right), K \text { small for solid }
$$

cylinder
K larger for hollow cylinder
5. The dependence of acceleration due to gravity ' g ' on the distance ` r ' from --------

Ans: Graph (d)

Sol: From $r=0$ to $r=R, g \propto r$

$$
\text { From } r=R \text { to } r>R, g \propto \frac{1}{r^{2}}
$$

6. The additional kinetic energy to be provided to a satellite of mass m revolving

Ans: $\frac{1}{2} G m M\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

Sol: $\Delta \mathrm{E}=-\frac{\mathrm{GMm}}{2 \mathrm{R}_{2}}-\left(-\frac{G M m}{2 \mathrm{R}_{1}}\right)$

$$
=G M m\left[\frac{1}{2}-\frac{1}{R_{1}}\right]
$$

7. A student measures the distance traversed in free fall of a body, initially at rest in a given time--
\qquad

Ans: $e_{1}+2 e_{2}$

Sol: $g=\frac{2 H}{T^{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{\Delta g}{g}=\frac{\Delta H}{H}+2 \frac{\Delta T}{T} \\
& =\mathrm{e}_{1}+2 \mathrm{e}_{2}
\end{aligned}
$$

8. The speed of a projectile at its maximum height is half of its initial speed-

Ans: 60°

Sol: $u \cos \theta=\frac{u}{2}$
$\Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
9. (a) Centre of gravity (CG) of a body is the point at which the weight of the body acts.-------

Ans: (a) and (b)
Sol: (a) and (b) are correct
10. The electric field of an electromagnetic wave in free space is given by --------

Ans: The wavelength λ is 188.4 m and the wave amplitude is $10 \mathrm{~V} / \mathrm{m}$

Sol: $\quad \bar{E}=10 \cos \left(10^{7} t+k x\right) j \mathrm{j} / \mathrm{m}$
Amplitude $=10 \mathrm{~V} / \mathrm{m} \rightarrow$ (c) is correct
$\mathrm{c}=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\omega=10^{7} \mathrm{rad} \mathrm{s}^{-1}$
$c=\frac{\omega}{k} \Rightarrow k=\frac{\omega}{c}=\frac{10^{7}}{3 \times 10^{8}}=\frac{1}{30}$
$=0.03 \mathrm{rad} \mathrm{m}^{-1} \Rightarrow(\mathrm{~b})$ is wrong.
$c=f \lambda=\frac{\omega}{2 \pi} \lambda$
$\Rightarrow \lambda=\frac{2 \pi \mathrm{c}}{\omega}=\frac{2 \pi \times 3 \times 10^{8}}{10^{7}}$
$=60 \pi$
$=188.5 \mathrm{~m} \Rightarrow(\mathrm{a})$ is correct
\therefore Answer is (3) a \& c are correct
11. A particle moves in $x-y$ plane according to rule x $=a \sin \omega t$ and $y=a \cos \omega t$

Ans: a circular path
Sol: $\quad x^{2}+y^{2}=a^{2} \Rightarrow$ circular path
12. The speed of light in media M_{1} and M_{2} is $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and ------

Ans: equal to greater than $\sin ^{-1}\left(\frac{3}{4}\right)$
Sol: $\quad i \geq C$
$\sin C=\frac{1}{\mu}=\frac{1.5}{2}=\frac{3}{4}$
$\Rightarrow \mathrm{i} \geq \sin ^{-1}\left(\frac{3}{4}\right)$
13. A ray of light is incident on a 60° prism at the minimum deviation position \qquad

Sol: $\quad r_{1}+r_{2}=A=60^{\circ}$
At minimum deviation, $r_{1}=r_{2}=r$
$\Rightarrow r=\frac{A}{2}=\frac{60^{\circ}}{2}=30^{\circ}$
14. A monoatomic gas at pressure P_{1} and volume V_{1} is compressed adiabatically to --------

Ans: $32 P_{1}$
Sol: $\quad \mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}, \gamma=\frac{5}{3}$ for monoatomic gas

$$
P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=P_{1}(8)^{5 / 3}=32 P_{1}
$$

15. If C_{P} and C_{V} denote the specific heats (Per unit mass)-------

Ans: $\quad c_{P}-c_{V}=\frac{R}{M}$
Sol: $\quad C_{P}-C_{V}=\frac{R}{M}$
$\left(\Theta C_{P}-C_{V}=R\right)$
16. The magnetic moment of a diamagnetic atom is -

Ans: equal to zero
Sol; $\quad M=0$ for diamagnetic atom
17. A current loop consists of two identical semicircular parts each of radius R-------

$$
\text { Ans: } \frac{\mu_{0} i^{2}}{2 \sqrt{2} R}
$$

Sol: $\quad M=\sqrt{2} \times\left[\mu_{0} \frac{1}{2} \times \frac{i}{2 R}\right]=\frac{\mu_{0} i}{2 \sqrt{2} R}$
18. Two identical bar magnets are fixed with their centres at a distance d \qquad

Ans: zero
Sol: $\bar{F}=q(\bar{v} \times \bar{B})=0(\Theta \bar{v}=0)$
19. A closely wound solenoid of 20000 turns and area of cross - section--------

Ans: $\quad 1.5 \times 10^{-2} \mathrm{Nm}$
Sol: $\tau=$ BINA $\sin \theta$
$=5 \times 10^{-2} \times 2 \times 2000 \times 1.5 \times 10^{-4} \sin 30^{\circ}$
$=1.5 \times 10^{-2} \mathrm{~N} \mathrm{~m}$
20. A condenser of capacity C is charged to a potential difference of V_{1}. The plates of the condenser are then \qquad
Ans: $\left[\frac{\mathrm{C}}{\mathrm{L}}\left(\mathrm{V}_{1}{ }^{2}-\mathrm{V}_{2}{ }^{2}\right)\right]^{1 / 2}$
Sol: $\quad \mathrm{U}_{1}=\frac{1}{2} \mathrm{CV}_{1}{ }^{2}$
$\mathrm{U}_{2}=\frac{1}{2} \mathrm{CV}_{2}{ }^{2}$
$\frac{1}{2} \mathrm{i}^{2} \mathrm{~L}=\mathrm{U}_{\mathrm{L}}=\mathrm{U}_{1}-\mathrm{U}_{2}=\frac{1}{2} \mathrm{C}\left(\mathrm{V}_{1}{ }^{2}-\mathrm{V}_{2}{ }^{2}\right)$
$\Rightarrow \mathrm{i}=\left[\frac{\mathrm{C}}{\mathrm{L}}\left(\mathrm{V}_{1}^{2}-\mathrm{V}_{2}{ }^{2}\right)\right]^{1 / 2}$
21. Two parallel metal plates having charges $+Q$ and -Q face each other at a certain distance--------

Ans: decrease
Sol: $\quad E^{\prime}=\frac{E}{K} \Rightarrow$ decreases
22. The electric field at a distance $\frac{3 R}{2}$ from the centre of a charged-------

Ans: Zero
Sol: $\quad \mathrm{E}=0$ at any point inside a charged shell.
23. The thermo emf E in volts of a certain thermocouple is found-------

Ans: $225^{\circ} \mathrm{C}$
Sol: $\frac{\mathrm{dE}}{\mathrm{d} \theta}=30-\frac{2 \theta}{15}=0$

$$
\Rightarrow \frac{30 \times 15}{2}=\theta
$$

$$
\text { i.e. } \theta=225^{\circ} \mathrm{C}
$$

24. A particle having a mass of $10^{-2} \mathrm{~kg}$ carries a charge of \qquad

Ans: Both \vec{B} and \vec{E} should be along the direction of velocity.

Sol: (b) and (c) are correct.
Note (c) will be correct only if $\frac{E}{B}=v$. No other choices is correct.
25. When monochromatic radiation of intensity I falls on a metal surface, the number --------

Ans: 2 N and T
Sol: $\quad I \propto N$
T depends only on work function and frequency.
26. The electron in the hydrogen atom jumps from excited state $(n=3)$ to its ground state $(n=1)---$

Ans: 7 V
Sol: $\quad E_{3}=\frac{-13.6}{3^{2}}=-1.51 \mathrm{eV}$

$$
E=E_{3}-E_{1}=-1.51-(-13.6)
$$

$$
=7 \mathrm{eV}
$$

$$
\therefore \mathrm{V}=7 \mathrm{~V}
$$

27. The binding energy per nucleon in deuterium and helium nuclei are --------

Ans: $\quad 23.6 \mathrm{M} \mathrm{eV}$

$$
\text { Sol: } \begin{aligned}
& { }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H}={ }_{2}^{4} \mathrm{He}+\mathrm{Q} \\
\therefore & \mathrm{Q}=(4 \times 7)-4 \times 1.1=23.6 \mathrm{M} \mathrm{eV}
\end{aligned}
$$

28. The decay constant of a radio isotope is λ. If A_{1} and A_{2} are its activities at times t_{1} and

Ans: $\frac{\left(A_{1}-A_{2}\right)}{\lambda}$

$$
\begin{aligned}
& \text { Sol: } A_{1}=\left|\lambda N_{1}\right| \Rightarrow N_{1}=\frac{A_{1}}{\lambda} \\
& A_{2}=\left|\lambda N_{2}\right| \Rightarrow N_{2}=\frac{A_{2}}{\lambda} \\
& N=\left(N_{1}-N_{2}\right)=\frac{\left(A_{1}-A_{2}\right)}{\lambda}
\end{aligned}
$$

29. For transistor action:

Ans: The base region must be very thin and lightly doped.

Sol: (b) is correct
(c) is correct
30. The following figure shows a logic gate circuit with two inputs A and B and the-------

Ans: NAND GATE

Sol: Gives high output when any of the inputs are zero and a low output only when both inputs are high \Rightarrow NAND GATE.
31. For vaporization of water at 1 atmospheric pressure, the values of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are-------

Ans: 373.4 K
Sol: $\quad \mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}=\frac{40.63 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{108.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}$

$$
=373.4 \mathrm{~K}
$$

32. A 0.66 kg ball is moving with a speed of $100 \mathrm{~m} / \mathrm{s}-$

Ans: $1.0 \times 10^{-35} \mathrm{~m}$
Sol: $\quad \lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.6 \times 10^{-34} \mathrm{Js}}{0.66 \mathrm{~kg} \times 100 \mathrm{~m} \mathrm{~s}^{-1}}$

$$
=1 \times 10^{-35} \mathrm{~m}
$$

33. Three moles of an ideal gas expanded spontaneously into vacuum----

Ans: Zero
Sol: For free expansion the work done is zero.
34. The following two reactions are known \qquad
Ans: +6.2 kJ
Sol: Equation (1) $-2 \times$ Equation (2) gives required equation.
Hence $-26.8 \mathrm{~kJ}-(2 \times-16.5 \mathrm{~kJ})$
$=+6.2 \mathrm{~kJ}$
35. The reaction
$2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g})$
Ans: $\quad\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.75)\right]$
Sol: $\quad 2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightleftarrows 3 \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}$
$\begin{array}{llll}1-0.5 & 1-0.25 & 0.75 & 0.25\end{array}$
$\mathrm{K}=\frac{[\mathrm{C}]^{3}[\mathrm{D}]}{[\mathrm{A}]^{2}[\mathrm{~B}]}$

$$
=\frac{(0.75)^{3} \times(0.25)}{(0.5)^{2} \times(0.75)}
$$

36. The pressure exerted by 6.0 kg of methane gas in a $0.03 \mathrm{~m}^{3}$ vessle--------

Ans: 41648 Pa
Sol: $P=\frac{n R T}{V}$

$$
=\frac{6 \times 8.314 \times 402}{16.05 \times 0.03}=41647.7 \mathrm{~Pa}
$$

37. Which of the following expressions correctly represents the equivalent -------

Ans: $\quad \frac{1}{3}{ }^{0} \lambda \lambda^{3+}+\frac{1}{2}{ }^{0} \mathrm{SO}_{4}{ }^{2-}$

$$
=\frac{1}{3}{ }^{0} \lambda_{A \lambda^{3+}}+\frac{1}{2}{ }^{0} \mathrm{SO}_{4}{ }^{2-}
$$

38. How many bridging oxygen atoms are present----

Ans: 6

Sol: There are six bridging oxygen atoms in $\mathrm{P}_{4} \mathrm{O}_{10}$.
39. Among the following which one has the highest---

Ans: CsF
Sol: Cs^{+}is the biggest cation and F^{-}is the smallest anion.
40. Which of the following oxidation states is the most

Ans: 3
Sol: $\quad+3$ is the most common oxidation state of Lanthanoids
41. Some of the properties of the two species-------

Ans: Dissimilar in hybridization for central atom with different structures.

Sol: $\quad \mathrm{NO}_{3}{ }^{-}$is planar - sp^{2}
$\mathrm{H}_{3} \mathrm{O}^{+}$is pyramidal $-\mathrm{sp}^{3}$
42. The compound A on heating gives a colourless gas and residue that is

Ans: CaCO_{3}
Sol: $\mathrm{CaCO}_{3} \xrightarrow{\Delta} \mathrm{CaO}+\mathrm{CO}_{2}$
(A) residue gas
$\mathrm{CaO} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Ca}(\mathrm{OH})_{2}$
(B)
$\xrightarrow{\mathrm{CO}_{2}} \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{CaCO}_{3}$
(C)
(A)
43. Among the elements $\mathrm{Ca}, \mathrm{Mg}, \mathrm{P}$ and Cl , the order------

Ans: $\mathrm{Cl}<\mathrm{P}<\mathrm{Mg}<\mathrm{Ca}$
Sol: Covalent radii of $\mathrm{Ca}=1.74 \mathrm{~A}^{\circ}$
$\mathrm{Mg}=1.36 \mathrm{~A}^{\circ}$
$\mathrm{P}=1.10 \mathrm{~A}^{\circ}$
$\mathrm{Cl}=0.99 \mathrm{~A}^{\circ}$
44. Which one of the following complexes is not expected- \qquad
Ans: $\quad\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
Sol: $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is a tetrahedral complex.
45. Which one of the following compounds will be most \qquad

Ans: $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$
Sol: It is a β-hydroxy ketone β-hydroxy aldehydes and ketones readily undergo dehydration.
46. Among the following four compounds-

Ans: $d>c>a>b$
Sol: Order of acidity is
p-nitrophenol > m-nitrophenol > phenol > methyl phenol
Presence of electron withdrawing groups increases acidity of phenols and electron donating group decreases the acidity of phenols.
47. Fructose reduces Tollen's reagent due to-

Ans: enolisation of fructose followed by conversion to aldehyde by base

Sol: Fructose is a ketose. In presence of base it undergoes rearrangement to form an equilibrium mixture containing glucose, fructose and mannose.
48. Which of the following conformers for ethylene glycol is--------

Ans: Gauche confirmation of ethylene glycol.
Sol: The gauche conformation of ethylene glycol is more stable due to intramolecular hydrogen bond formation.
49. The IUPAC name of the compound--------

Ans: pent - 3-en-1-yne
Sol: $\begin{array}{llllll}5 & 4 & 3 & 2 & 1\end{array}$
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH} \quad$:
pent-3-en-1 - yne
50. When glycerol is treated with excess of HI-------

Ans: 2 -iodopropane
Sol: Glycerol when treated with excess of HI gives 2-iodopropane.
51. Which of the following species is not electrophilic

Ans: $\mathrm{H}_{3} \mathrm{O}^{+}$
Sol: $\mathrm{H}_{3} \mathrm{O}^{+}$is not electrophilic.
52. In the following reaction
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}------$
Ans: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$

$\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
53. In which of the following molecules the central atom-

Ans: SF_{4}
Sol: Central atom in SF_{4} is $\mathrm{sp}^{3} \mathrm{~d}$ hybridized.
54. The rate of the reaction $2 \mathrm{NO}+\mathrm{Cl}_{2}->2 \mathrm{NOCl}$ is given by--------

Ans: Increasing the temperature

Sol: Rate constant depend on temperature but not on concentration.
55. Match List-I (Equations) with List-II (type of processes)-------

Ans: (iv) (i) (ii) (iii)
Sol: Where $K_{p}>Q$ reaction is spontaneous

$$
\Delta G=\Delta G^{\circ}+R T \ln Q
$$

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

56. Match List-I (substances) with List-II (pocesses) employed in the manufacture of the

Ans: (iv) (ii) (iii) (i)

Sol: Sulphuric acid - contact process

Steel - Bessemer process
NaOH - Leblanc process
Ammonia - Haber process
57. Match the compounds given in List-I with their characteristic reactions given in List II.

Ans: (ii) (iii) (i) (iv)
Sol: (a) is a primary amine and it produces bad smell when warmed with alcoholic KOH and CHCl_{3} (carbylamine reaction)
(b) Propyne is a terminal alkyne and it gives white ppt with ammoniacal silver nitrate
(c) is an ester and it undergoes alkaline hydrolysis
(d) is a 2° alcohol and it produces cloudiness with Lucas reagent in about 5 minutes
58. Some statements about heavy water are

Ans: (a) and (b)
Sol: Heavy water is less effective solvent, than ordinary water as its dielectric constant is lesser.
59. Consider the following relations for emf of a electrochemical

Ans: (b) and (d)
Sol: emf of cell $=E_{\text {redn (cathode) }}-E_{\text {redn (anode) }}$ which is the same as
$\mathrm{E}_{\text {oxiation(anode) }}+\mathrm{E}_{\text {redn (cathode) }}$ or
$\mathrm{E}_{\text {oxiation(anode) }}$ - $\mathrm{E}_{\text {oxidation (cathode) }}$
60. Following compounds are given:

Ans: (a), (b) and (c)
Sol: Compounds containing $\mathrm{CH}_{3} \mathrm{CO}$ or $\mathrm{CH}_{3} \mathrm{CHOH}$ - groups will give iodoform when heated with I_{2} and NaOH .
61. Given below is the diagram of a bacteriophage. In which one of the options \qquad
Ans: Head, sheath, collar, tail fibres
Sol: Bacteriophage consists head, collar, sheath, end plate with fibres.
62. Examine the figures A, B, C and D. In which one of the four options all

Ans: Seleginella, Equisetum, Salvinia, Ginkgo
Sol: Selaginella, Equisetum and Salvinia are pteridophytes and Ginkgo is gymnospherm.
63. In eukaryotic cell transcription, RNA splicing and RNA--------

Ans: Nucleus
Sol: Splicing and capping of hnRNA is required for the removal of introns and making the functional mRNA.
64. The figure given below shows the conversion of a substrate into product by an enzyme. ------

Ans: Transition state, Potential energy, Activation energy without enzyme, Activaton energy with enzyme.

Sol: The graph explains the concept of activation energy.
65. An elaborate network of filamentous Proteinaceous structures--------

Ans: Cytoskeleton
Sol: Cytoskeleton helps in motility, maintenance of the shape of the cell and mechanical support.
66. In Antirrhinum to plants with p ink flowers wer hybridized-------

Ans: Rr
Sol: In Amtirrhinum, the pink colour results due to an intermediate genotype is Rr.
67. The lac operon consists of \qquad
Ans: One regulatory gene and three structural genes.

Sol: lac operon means structurally different genes involved in a functional events in many ways.
68. A cross in which an organism showing a dominant phenotype in crossed--------

Ans: Test cross

Sol: Test cross is used for finding the genotype of an organism in doubt.
69. Transport of food material in higher plants takes

Ans: Sieve elements
Sol: Sieve elements are the components of phloem.
70. Kranz anatomy is one of the characteristics of the leaves \qquad

Ans: Sugarcane
Sol: Kranz anatomy is seen in C_{4} plants.
71. Consider the following four statements A, B, C and D and select--------

Ans: (A) and (B)
Sol: The option B is not correct, because a mistake in the representation of ovary fusion.
72. Vegetative propagation in Pistia occurs by -------

Ans: Offset
Sol: Offset means short internode with and each node bearing rosette leaves and tuft of roots.
73. Which one of the following is manoecious-------

Ans: Pinus

Sol: Monoecious means bisexual and homothallic conditions.

74. The correct floral formula of soyabean

Ans: $\%$ ($\mathrm{K}_{(5)} \mathrm{C}_{1+2+(2)} \mathrm{A}_{(9)}+1 \mathrm{G}_{1}$
Sol: Soyabean belongs to the Fabaceae family.
75. Aestivation of petals in the flower of cotton is

Ans: (3) Diagram - refer question paper.
Sol: In twisted aestivation, marginal lobes of succeeding petals are alternately overlapped.
76. Study the pathway given below-------

Ans: Fixation, Decarboxylation, Regeneration

Sol: Pathway of Hatch-Slack scheme of C_{4} - metabolism is shown.
77. Given below is the diagram of a stomatal apparatus. In which of the -------

Ans: Epidermal cell, Subsidiary cell, Stomatal aperture, Guard cell

Sol: Stomatal aperture is surrounded by guards cells, which in turn by subsidiary cells.
78. Read the following four statements $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and select the right option having both correct statements--------

Ans: B and D
Sol: Both the statements are correct.
79. One of the commonly used plant growth hormone in tea--------

Ans: Indole-3- acetic acid
Sol: IAA is the derivative of auxin.
80. Root development is promoted by --------

Ans: Ethylene

Sol: Ethylene promotes root growth and root hair formation.
81. Examine the figures (A-D) given below and select the right option out of 1-4, in which--------

Ans: Offset, Antheridiophore, Antipodals, Oogonium

Sol: All the diagrams are related to the reproduction.
82. Which of the following representations shows the pyramid of numbers in a forest--------

Ans: B
Sol: Pyramid of number in an ecosystem shows gradual decrease from the producers to the successive consumers.
83. Study the cycle shown below and select the option which gives correct words--------

Ans: Denitrification, Ammonification, Plants, Animals.

Sol: Schematic representation of nitrogen cycle is shown.
84. Which one of the following is a xerophytic plant in which the stem is modified-

Ans: Opuntia

Sol: Opuntia shows phylloclade modification from the stem.
85. An example of endomycorrhiza is--------

Ans: Glomus
Sol: Glomus is one of the important mycorrhizic fungus.
86. Leguminous plants are able to fix atmospheric nitrogen through the process of --------

Ans: Nitrogenase is insensitive to oxygen.
Sol: Nitrogenase enzyme is sensitive to the molecular oxygen.
87. Black (stem) rust of wheat is caused by

Ans: Puccinia graminis
Sol: Puccinia graminis causes black or stem rust in wheat.
88. Which of the following are used in gene

Ans: Plasmids
Sol: Plasmids are used as vector for cloning genes.
89. Which one of the following can not be used for preparation of vaccines--------

Ans: Heat killed suspensions of virulent bacteria.

Sol: Vaccines are either inactivated or attenuated pathogens.
90. Which one of the following is now being commercially produced by

Ans: Insulin
Sol: Insulin is produced commercially as humulin.
91. Crocodile and Penguin are similar to whale and Dogfish in which

Ans: Have gill slits at some stage
Sol: Presence of pharyngeal gill slit is a feature of all chordates.
92. Select the correct combination of the statements $(a-d)$ regarding the characteristics of

Ans: (a), (b), (d)
Sol: Chemosynthetic bacteria produce various kinds of inorganic chemical compounds.
93. Identify the components labelled $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D in the diagram below from the list (i) to (viii)-------

Ans: (v) (iv) (viii) (iii)
Sol: The diagram is the part of ER, nucleus and cytoplasm.
94. Three of the following statements about enzymes
\qquad

Ans: Most enzymes are proteins but some are lipids.

Sol: Enzymes are either simple or conjugated proteins only.
95. Study the pedigree chart of a certain family given below----

Ans: The female parent is heterozygous.
Sol: it is an autosomal disease.
96. The most apparent change during the evolutionary history of --------

Ans: Remarkable increase in the brain size.
97. Given below are four statements (A-D) each with one or two blanks \qquad

Ans: (D) - (i) small variations, (ii) survival, (A) (i) convergent

Sol: Vermiform appendix is vestigeal organ.
98. Fastest distribution of some injectible material / medicine and with \qquad
Ans: Veins
Sol: Intravenous injection of vaccines helps direct target of the cells through the bloods stream.
99. Select the answer with correct matching of the structure, its location and --------

Ans: Hypothalamus, Forebrain, temperature, urge for eating and drinking

Sol: Cerebellum is in the hind brain. No rods in blind spot.
100.ABO blood grouping is controlled by gene I which has three alleles--------

Ans: Four
Sol: $A, B, A B$ and O are the four blood groups.
101.Which one of the following is the correct description of a certain part ---------

Ans: Parietal bone and the temporal bone of the skull are joined by fibrous joint.

Sol: These are bones of skull.
102. In which one of the following organisms its excretory organs are ------

Ans: Earthworm - Pharyngeal, integumentary and septal nephridia

Sol: There are 3 types of nephirida in earthworm.
103. Select the correct matching of a hormone, its source --------

Ans: Norepinephrine, Adrenal medulla, Increases heart beat, rate of respiration and alertness

Sol: α cells secrete glucagon; Prolactin secreted by anterior pituitary.
104. Given below are four statements (a-d) regarding human blood circulatory-----

Ans: (a) and (d)
Sol: Angina is due to reduced supply of blood to heart. $A B$ group is universal recipient.
105. Which one of the following statements about the particular entity is true--------

Ans: The gene for producing insulin is present in every body cell.

Sol: Centriole produces aster; Histones are found in nucleosome; DNA is formed of nucleotides.
106. Which one of the following pairs of structures is correctly matched with their--------

Ans: Tibia and fibula - Both form parts of knee joint

Sol: Tibia and fibula - both form parts of knee joint.
107.If for some reason the parietal cells of the gut epithelium become partially--------

Ans: Proteins will not be adequately hydrolysed by pepsin into proteoses and peptones

Sol: Parietal cells secrete HCl .
108. In human female the blastocyst ---------

Ans: Gets implanted in endometrium by the trophoblast cells.

Sol: It get implanted in $7^{\text {th }}$ day after fertilization.
109. Secretions from which one of the following are rich in fructose--------

Ans: Male accessory glands.
Sol: Semen is rich in fructose, calcium and some enzymes.
110.When domestic sewage mixes with river--------

Ans:-The increased microbial activity uses up dissolved oxygen.

Sol: BOD increase due to the sewage disposal into the water body.
111. Which one of the following is most appropriately defined--------

Ans: Predator is an organism that catches and kills other organism for food.

Sol: Prey is eaten by the predator.
112. Jaundice is a disorder--------

Ans: Digestive system
Sol: It is due to a block in bile duct.
113.A person suffering from a disease caused by Plasmodium, --------

Ans: The parasite after its rapid multiplication inside RBCs ruptures them, releasing the stage to enter fresh RBCs.

Sol: Rupture of RBC is associated with the release of haemozoin which is responsible for high recurring fever.
114. Which one of the following techniques is safest

Ans: Magnetic resonance imaging (MRI).
Sol: MRI use strong magnetic field to avoid radiation effects.
115. The 3'-5' phosphodiester linkages inside a \qquad
Ans: One nucleotide with another nucleotide.
Sol: In DNA nucleotides are jointed by 3' - 5' phosphodiester bonds.
116. In genetic engineering, a DNA segment (gene) of

Ans: (B) and (D) only.
Sol: Plasmids and bacteriophages are commonly used as vectors.
117.The fruit fly Drosophila melanogaster was--------

Ans: It completes life cycle in about two weeks.
Sol: Drosophila completes life cycle in two weeks.
118. Signals from fully developed foetus and placenta ultimately

Ans: Oxytocin from maternal pituitary.
Sol: Oxytocin from maternal pituitary is need.
119.The Indian Rhinoceros is a natural inhabitant
\qquad

Ans: Assam
Sol: Rhino is found in Kasiranga National Park.
120. The haemoglobin content per 100 ml of blood of a normal--------

Ans: $12-16 \mathrm{~g}$
Sol: A healthy individual has $12-16 \mathrm{~g}$ of haemoglobin in every 100 ml of blood.

