Total No. of Questions-12]

S.E. (Prod./Prod. S-W) (II Sem.) EXAMINATION, 2010

 THEORY OF MACHINES(2003 COURSE)
Time : Four Hours
Maximum Marks:00
N.B. :- (i) Answer any three questions from Section.
(ii) Answers to the two Sections should be written in separate answer-books.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Figures to the right indicate full marks.
(v) Use of electronic pocket calcultor is allowed.
(vi) Assume suitable data, if neces y.

1. (a) List inversion of single shler crank chain. Explain any two with neat sketche
(b) Explain Grubler criterion for determining degree of freedom of mechanism.
(c) Differentiate between spatial and planer mechanism. Or
2. (a) Define hematic link. Can spring, belt, liquid be treated as lin. Justify your answer.
(b) te and explain Grashoff's criterion as applied to 4 bar chain. How is it useful in studying the inversion of 4-bar chain ? [6] P.T.O.
(c) Define the following terms :
(i) Mechanism
(ii) Lower pair
(iii) Completely constrained motion
(iv) DOF of mechanism.
[4]
3. (a) In the mechanism shown in Fig. 1, $\mathrm{OA}=300 \mathrm{~mm} A=600 \mathrm{~mm}$ $\mathrm{AC}=1200 \mathrm{~mm}, \mathrm{BD}=1200 \mathrm{~mm} . \mathrm{OD}$ is ho htal at the instant shown and OA rotates at 200 r.m. clockwise direction.

Find :
(i) Velocities of C and D
(ii) Acceleration of C
(iii) Angular velocities of fink AC and BD .

Fig. 1
(b) State and prove Kennedy theorem of 3 centres in line. [4]
4. (a) In an IC engine mechanism, the stroke length is 40 cm and obliquity ratio is 4 . The angular acceleration of connecting rod is found to be $54 \mathrm{rod} / \mathrm{s}^{2}$ when the crank makes an ang. 45° with IDC while rotating at a uniform angular speed. De \quad ine :
(i) The crank speed in RPM
(ii) Acceleration of piston
(iii) Velocity and acceleration of mid-point ${ }^{\text {mnecting rod. }}$ Use Klein's construction method.
[8]
(b) A small connecting rod 220 mm lon hetween centres has a mass of 2 kg and mass moment 0 inerta of $0.02 \mathrm{~kg}-\mathrm{m}^{2}$ about its C.G. The C.G. is located at astance of 150 mm from small end centre. Determino-dynmically equivalent two mass system when one mass is cated at small end centre. If the connecting rod is eplaced by two masses located at two centres, find gorrection couple that must be applied for complete mical equivalence of the system when the angular acceleration of connecting rod is $20000 \mathrm{rad} / \mathrm{sec}^{2}$ anticlockrpo
5. (a) Fxprai interference in involute gears with suitable sketch. [4]
(b) Nxpain compound gear train and hence deduce the velocity ratio for each gear pair.
(c) Two mating gears have 20 and 40 involute teeth of 10 mm module and 20° pressure angle. The addendum on each wheel is to be made of such a length that the line of contact on each side of pitch point has half the max. possible enth. Determine addendum for each gear wheel and lengto or line of contact. If smaller wheel rotates at 250 r.p. find the sliding velocity at the start and end of engage t. [10] Or
6. (a) Prove that the velocity of sliding is proportional to the distance of point of contact form pitch point.
(b) In an epicyclic gear train as shown ig. 2 the internal wheels A \& F and compound wheel rotate about the axis O. The wheel B \& E rotate o ains fixed to arm L. The wheels have same pitch and tho of teeth are B and E 18, C 28, and D 26. If the (rm) makes -150 r.p.m. clockwise find speed of F when
(i) The wheel A is

(ii) The wheel A make 15 r.p.m. counterclockwise.

Fig. 2

SECTION II

7. (a) Define the following terms as applied to cam with neat sketches :
(i) Pitch circle
(ii) Pitch curve
(iii) Base circle.
(b) Draw the profile of a cam with oscillating rolle, ollower for the following motion :
(i) Follower to move outward through an ular displacement of 20° during 120° of cam rotatn with SHM.
(ii) Follower to dwell for 50° o 2 n rotation.
(iii) Follower to return to it in position in 90° of cam rotation with uniformacceleration and retardation.
(iv) Follower to dwell the remaining period of cam rotation. The distance betwe the pivot centre and roller centre is 130 mm and the disoance between the pivot centre and cam axis is 150 mm . Fe minimum radius of cam is 80 mm and roller diameter? 50 mm . Assume cam rotates clockwise direction.
8. (a) Exp the following with neat sketches :
ositive cam
(ii) Tangent cam.

Explain why constant velocity of cam is not practicable at high speed unless it is modified. How is it modified ? [4]
(c) A cam rotating clockwise with uniform speed is to give the roller follower of 20 mm diameter with the following motion:
(i) Follower more outward through distances of 30 mm during 120° of cam rotation
(ii) Follower to dwell for 60° of cam rotation
(iii) Follower to return to its initial position during 90 cam rotation and

(iv) Follower to dwell for the remaining 90° of catation. Minimum cam radius is 45 mm . Line of strke f the follower is offset 15 mm from cam axis. Outstroke and return stroke of follower with SHM. Draw cam rofile.
9. (a) Write a short note on direct ard rivers crank method. [6]
(b) Four masses A, B, C, D as shown delow are to be completely balanced :

	Radius (mm)	
A		180
B	30	240
C	50	120
D	40	150

The plars containing masses B and C are 300 mm apart. The angle between planes containing B and C is 90°. B and C mros angles of 210° and 120° respectively with D in same ose. Find :

Magnitude and angular position of mass A
(2) Position of planes A and D.
10. (a) Explain in brief partial primary balancing of reciprocating masses in engine.
(b) The three cranks of a three cylinder locomotive ara an the same axle and are set at 120°. The pitch of th cinders is 1 meter and stroke of each piston is 0.6 m . Th reciprocating masses are 300 kg for inside cylinders and 260 kg for each outside cylinder and the planes of rotation balance masses are 0.8 m from the inside crank.
If 40% of the reciprocating parts to be balanced, find : (i) Magnitude and position alancing masses required at a radius of 0.6
(ii) The hammer bloy pheel when the axle makes 360 r.p.m.
11. (a) What are the causes and effects of vibration ?
(b) Define the following terms :
(i) Tramped free vibration
(ii) Longitudinal vibration
(tv. Amplitude of vibration
(vi) Resonance
(v) Damping ratio.
(c) Determine the natural frequency of vibration for the system shown in Fig. 3 below.

Fig. 3
Or
12. (a) Explain significance of vibration isolano. What are vibration isolation materials ?
(b) Explain the terms underdaming, critical damping and overdamping.
(c) Derive an expression logarithmic decrement in terms of damping ratio.

