B3.2-R3 BASIC MATHEMATICS

NOTE:

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours
Total Marks: 100
1.
a) If $\frac{(1+i)(1+\sqrt{3} i)}{1-i}=2(\cos \theta+i \sin \theta)$, then find the value of θ.
b) If \mathbf{A} and \mathbf{B} are symmetric matrices, then show that $\mathbf{A B}-\mathbf{B A}$ is skew-symmetric matrix.
c) If $w(\# 1)$ is a cube root of unity, then show that

$$
\mathrm{A}=w+w^{(1 / 2+3 / 8+9 / 32+\ldots \ldots \infty)}
$$

is real. Hence, find the value of A.
d) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^{3}}{2^{n}}$.
e) Evaluate the integral $I=\int_{0}^{2} \frac{3 x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$
f) Find the coefficient of x^{2} in the binomial expansion of $\left(x-\frac{1}{2 x}\right)^{8}$
g) Let $|\mathbf{a}|=7,|\mathbf{b}|=2, \mathbf{a} \times \mathbf{b}=3 \mathbf{i}-2 \mathbf{j}+6 \mathbf{k}$. Find the acute angle between the vectors \mathbf{a} and b.
2.
a) Find the inverse of the matrix
$\mathbf{A}=\left(\begin{array}{rrr}-1 & 2 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right)$
using Gauss-Jordan elimination method.
b) Find all the eigen values of the matrix $\mathbf{B}=2 \mathbf{I}+3 \mathbf{A}-\mathbf{A}^{2}$, where I is an identity matrix of order 3 and

$$
\mathbf{A}=\left(\begin{array}{rrr}
3 & 1 & -1 \\
-2 & 1 & 2 \\
0 & 1 & 2
\end{array}\right)
$$

c) Using the concept of rank, find the values of a and b for which the system of equations

$$
\begin{align*}
& 3 x-y+2 z=3 \\
& 2 x+y+3 z=5 \\
& x-2 y+a z=b \tag{6+6+6}
\end{align*}
$$

has no solution.
3.
a) Show that

$$
\tan \left[i \log _{e}\left(\frac{a-i b}{a+i b}\right)\right]=\frac{2 a b}{a^{2}-b^{2}} .
$$

b) Find the value of x, when

$$
\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\ldots \ldots \ldots\right)+\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}-\ldots \ldots \ldots\right)=\frac{\pi}{2} .
$$

c) Find all the asymptotes to the curve

$$
y \sqrt{x^{2}-4}=x^{2} .
$$

(6+6+6)
4.
a) Find the limit

$$
\lim _{x \rightarrow 0} \frac{\cos \left(2 x^{3}\right)-1}{\sin ^{6}(2 x)}
$$

b) Find the domain of the function

$$
f(x)=\sqrt{\sin ^{-1}(2 x)+\pi / 6} .
$$

c) The function $y=a \cos x+b \tan x+x$ has extreme values at $x=0$ and $x=\pi / 6$. Find the values of a and b.
d) Find $\frac{d y}{d x}$ when $y=(\sin x)^{\cos ^{-1} x}$.
5.
a) Show that $\int_{0}^{\pi} f(\sin x) d x=2 \int_{0}^{\pi / 2} f(\sin x) d x$.
b) Evaluate the integral

$$
I=\lim _{x \rightarrow 0}\left[\frac{\int_{0}^{x} \sin ^{3} t d t}{x^{4}}\right]
$$

c) The area of the region bounded by the curves $y=x-x^{2}$ and $y=m x$ equals $9 / 2$. Find the value of m.
6.
a) Find the value of p, for which the equation

$$
p x^{2}+x y+y^{2}-5 x-y+p=0
$$

represents a pair of straight lines.
b) Write the equation

$$
4 x^{2}+9 y^{2}-32 x+54 y+109=0
$$

in standard form of the equation of the ellipse. Hence, determine the eccentricity and the coordinates of foci.
c) Find the product of the perpendicular distances from the foci to a tangent to the hyperbola

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \tag{6+6+6}
\end{equation*}
$$

7.

a) Find the sum of the series

$$
\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\ldots \ldots \ldots \ldots \ldots \ldots \text { upto } \infty
$$

b) Find a unit vector \mathbf{a} which is horizontal and perpendicular to the vector $\mathbf{b}=4 \mathbf{i}-3 \mathbf{j}+7 \mathbf{k}$.
c) Two vectors $\mathbf{a}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$ are given. Write the vector \mathbf{b} as sum of vectors \mathbf{b}_{1} and \mathbf{b}_{2} such that \mathbf{b}_{1} is parallel to \mathbf{a} and \mathbf{b}_{2} is perpendicular to \mathbf{a}. Find the vectors \mathbf{b}_{1} and \mathbf{b}_{2}.
(5+5+8)

