	 Answer question 1 and any FOUR questions from 2 to 7. Parts of the same question should be answered together and in the sequence. 	same	
Tin	Time: 3 Hours Total Ma		
1.			
a)	If $P = \begin{bmatrix} I & -I \\ 2 & -I \end{bmatrix}$, $Q = \begin{bmatrix} I & I \\ q & -I \end{bmatrix}$ and $(P+Q)^2 = P^2 + Q^2$, determine the value of q.		
b)	Find the smallest integer n for which $\left(\frac{I+i}{I-i}\right)^n = I$.		
C)	If $f(9) = 9, f'(9) = 4$, evaluate $\lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3}$.		
d)	Find the solution set of the equation $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$		
	It is given that $x = -9$ is one of the roots.		
e)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{3n}{2(n+1)}$		
f)	Find the unit vector perpendicular to the plane of two vectors \overline{a} and \overline{b} , where		
a)	$\overline{a} = i - j + 2k$ and $\overline{b} = 2i + 3j - k$. Find the vertex and latus rectum of the parabola $(y+3)^2 = 2(x+2)$.		
g)	Find the vertex and lates rectain of the parabola $(y+3)^2 = 2(x+2)$.	(7x4)	
2 .			
a)	For what values of λ and μ , the simultaneous equations $\begin{array}{l}x + y + z = 6\\x + 2y + 3z = 10\\x + 2y + \lambda z = \mu\end{array}$		
	have (i) no solution, (ii) a unique solution, (iii) an infinite number of solutions.		
b)	Find the eigen values and eigen vectors of the matrix $ \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix} $		
		(10+8)	
3. a) b)	Find the equation of the common tangent to the parabolas $y^2 = 4ax$ and $x^2 = 4by$. Find the center, the length of the axes and the eccentricity of the ellipse $2x^2 + 3y^2 - 4x - 12y + 13 = 0$		
	2x + 3y - 4x - 12y + 13 = 0	(9+9)	

B3.2-R3: BASIC MATHEMATICS

NOTE:

4.

a) If
$$y = e^t \cos t$$
, $x = e^t \sin t$, and $y''(x + y)^2 = K (xy' - y)$. Find K.

b) If x, y, z are all different and given that

x	X ²	1+x ³	
у	y ²	1+y ³	= 0,
z	Z ²	1+z ³	

Determine the value of (1+xyz).

(9+9)

5.

a)

Find the area between the parabola $y^2 = 4ax$ and the line y = mx. If e and e' are the eccentricities of a hyperbola and its conjugate, prove that b) $\left[\begin{array}{c} 1 \\ -1 \end{array} \right]_{+} \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$

$$\left(\frac{1}{e^2}\right) + \left(\frac{1}{e'^2}\right) = 1$$
(10+8)

6.

a) Evalute
$$\int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} dx.$$

Show that sin x(1 + cos x) has a maximum value when $x = \frac{\pi}{3}$. b)

c) Find the value of a and b in order that

$$\lim_{x \to 0} \frac{x(1 + a \cos x) - b \sin x}{x^3} = 1.$$

(6+6+6)

7.
a) State Lagrange's mean value theorem. Hence show that

$$e^x > 1 + x$$
, $x > 0$
b) If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, show that $A^2 - 4A - 5I = 0$. Use this result to find A^{-1} .
c) Find the limit when $n \to \infty$ of the series $\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}$.
(6+6+6)