B3.2-R3: BASIC MATHEMATICS

NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours
Total Marks: 100
3.

a) Find the value of x for which the determinant of the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & -2 & 3 \\ 1 & 2 & 1 \\ \mathrm{x} & 2 & -3\end{array}\right]$ is zero.
b) Let $\frac{1}{\operatorname{Cos} \theta-i \operatorname{Sin} \theta}=A+i B, \quad i=\sqrt{-1}$. Find A and B.
c) A particle is moving in a straight line according to $S=2 t^{3}-9 t^{2}+24 t$, where S is in meters and t is in seconds. Determine the distance and velocity at the end of 2 seconds.
d) Evaluate $\int \frac{\operatorname{Sin} x}{1+\operatorname{Cos}^{2} x} d x$.
e) Find the centre and radius of the circle $2 x^{2}+2 y^{2}-12 x+8 y-95=0$.
f) Is the series $1^{2}+2^{2} x+3^{2} x^{2}+4^{2} x^{3}+\ldots$
convergent or divergent?
g) Two vectors $\overrightarrow{\mathrm{C}}$ and $\overrightarrow{\mathrm{D}}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{C}}=2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+8 \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{D}}=\hat{\mathrm{i}}+\mathrm{p} \hat{\mathrm{j}}+\hat{\mathrm{k}}
\end{aligned}
$$

are perpendicular to each other. Find p.
2.
a) Find out for what values of λ, the equations

$$
\begin{aligned}
x+y+z & =1 \\
x+2 y+4 z & =\lambda \\
x+4 y+10 z & =\lambda^{2}
\end{aligned}
$$

have a solution.
b) Evaluate the determinant

$$
\Delta=\left|\begin{array}{ccc}
1 & \operatorname{Sin} \theta & 1 \\
-\operatorname{Sin} \theta & 1 & \operatorname{Sin} \theta \\
-1 & -\operatorname{Sin} \theta & 1
\end{array}\right|
$$

Also prove that $2 \leq \Delta \leq 4$.
c) Find the characteristic roots and characteristic vectors of a matrix A, where

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right]
$$

3.

a) Sketch the graph of the function $y=4-x^{2}, 0 \leq x \leq 2$. Determine the area enclosed by the curve, the x-axis and the lines $x=-2$ and $x=2$.
b) The length x of the rectangle is decreasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$ and the width y is increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. Find the rate of change of (i) perimeter, (ii) the area of the rectangle when $x=12 \mathrm{~cm}$ and $y=5 \mathrm{~cm}$.
c) Determine $\lim _{x \rightarrow 0} \frac{\operatorname{Sin} 3 x}{\operatorname{Sin} x}$.
4.
a) Evaluate $\int_{1}^{3} \frac{\left(x^{2}+5 x+3\right)}{\left(x^{2}+3 x+2\right)} d x$.
b) Evaluate $\int e^{x}\left(x^{-1}-x^{-2}\right) d x$.
c) Test for positive values of x the convergence of the series $\frac{x}{1.2}+\frac{x^{2}}{3.4}+\frac{x^{3}}{5.6}+\frac{x^{4}}{7.8}+\ldots$
(6+6+6)
5.
a) Sketch the curve $x^{2}-4 x+(y-3)^{2}=0$. Also determine the area enclosed by the curve.
b) Express the following matrix A as a sum of symmetric and skew-symmetric matrix

$$
\mathrm{A}=\left[\begin{array}{ccc}
-1 & 7 & 1 \\
2 & 3 & 4 \\
5 & 0 & 5
\end{array}\right] .
$$

c) Find the middle term in the expansion of $(5+2 x)^{17}$.
6.
a) Obtain the asymptotes parallel to the x-axis of the curve $x^{2} y-3 x^{2}-5 x y+6 y+2=0$.
b) Find the equation of the tangent at $\theta=\frac{\pi}{2}$, to the curve

$$
\begin{aligned}
& x=a(\theta+\operatorname{Sin} \theta) \\
& y=a(1+\operatorname{Cos} \theta)
\end{aligned}
$$

c) Obtain k if

$$
\begin{align*}
& y=\underset{a n d}{\operatorname{Cos}(\log x)}+b \operatorname{Sin}(\log x) \\
& k y=\left(x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}\right) \tag{6+6+6}
\end{align*}
$$

7.

a) Find the first three terms of Taylor's series for $\ln (x)$ about $x=2$.
b) Find the equation of the ellipse whose foci are (2, 3), (-2, 3) with semi-minor axis $\sqrt{5}$.
c) If $x^{3}+[f(x)]^{3}-3 a x[f(x)]=0$, find $f^{\prime}(x)$ given $a x-[f(x)]^{2} \neq 0$.

