B3.2-R3: BASIC MATHEMATICS

NOTE: 1. Answer question 1 and any FOUR from questions 2 to 7.	
2	
Time: 3 HoursTotal Marks: 100	
1.	
a)	Find the value of x for which the determinant of the matrix $A = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 2 & 1 \\ x & 2 & -3 \end{bmatrix}$ is zero.
b)	Let $\frac{1}{\cos\theta - i\sin\theta} = A + iB$, $i = \sqrt{-1}$. Find A and B.
C)	A particle is moving in a straight line according to $S=2t^3 - 9t^2 + 24t$, where S is in meters an t is in seconds. Determine the distance and velocity at the end of 2 seconds.
d)	Evaluate $\int \frac{\sin x}{1 + \cos^2 x} dx$.
e) f)	Find the centre and radius of the circle $2x^2 + 2y^2 - 12x + 8y - 95 = 0$. Is the series $1^2 + 2^2x + 3^2x^2 + 4^2x^3 +$ convergent or divergent?
g)	Two vectors \overrightarrow{C} and \overrightarrow{D}
	$\vec{C} = 2\hat{i} + 5\hat{j} + 8\hat{k}$
	$\vec{D} = \hat{i} + p\hat{j} + \hat{k}$
	are perpendicular to each other. Find p. (7x4
2.	
a)	Find out for what values of λ , the equations x + y + z = 1
	$x + 2y + 4z = \lambda$
	$x + 4y + 10z = \lambda^2$ have a solution.
b)	Evaluate the determinant
	$\Delta = \begin{vmatrix} 1 & \sin\theta & 1 \\ -\sin\theta & 1 & \sin\theta \\ -1 & -\sin\theta & 1 \end{vmatrix}$
C)	Also prove that $2 \le \Delta \le 4$. Find the characteristic roots and characteristic vectors of a matrix A, where
0)	
	$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$

3.

- Sketch the graph of the function $y = 4 x^2$, $0 \le x \le 2$. Determine the area enclosed by the a) curve, the x-axis and the lines x = -2 and x = 2.
- The length x of the rectangle is decreasing at the rate of 2cm/sec and the width y is b) increasing at the rate of 2cm/sec. Find the rate of change of (i) perimeter, (ii) the area of the rectangle when x = 12cm and y = 5cm.

c) Determine
$$\lim_{x \to 0} \frac{\sin 3x}{\sin x}$$
.

(6+6+6)

4.

a) Evaluate
$$\int_{1}^{3} \frac{(x^2 + 5x + 3)}{(x^2 + 3x + 2)} dx$$

А

b) Evaluate
$$\int e^{x} (x^{-1} - x^{-2}) dx$$
.

c) Test for positive values of x the convergence of the series
$$\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \frac{x^4}{7.8} + \dots$$
 (6+6+6)

5. Sketch the curve $x^2 - 4x + (y - 3)^2 = 0$. Also determine the area enclosed by the curve. Express the following matrix A as a sum of symmetric and skew-symmetric matrix a)

b)

$$= \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix}.$$

Find the middle term in the expansion of $(5 + 2x)^{17}$. C)

(6+6+6)

- 6.
- Obtain the asymptotes parallel to the x-axis of the curve $x^2y 3x^2 5xy + 6y + 2 = 0$. a)

Find the equation of the tangent at $\theta = \frac{\pi}{2}$, to the curve b)

$$x = a(\theta + \sin\theta)$$
$$y = a(1 + \cos\theta)$$

Obtain k if C)

 $y = a \cos(\log x) + b \sin(\log x)$ and $ky = (x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx})$

(6+6+6)

7.

- Find the first three terms of Taylor's series for ln(x) about x=2. a)
- b) Find the equation of the ellipse whose foci are (2, 3), (-2, 3) with semi-minor axis $\sqrt{5}$.

c) If
$$x^3 + [f(x)]^3 - 3ax[f(x)] = 0$$
, find $f'(x)$ given $ax - [f(x)]^2 \neq 0$.

(6+6+6)