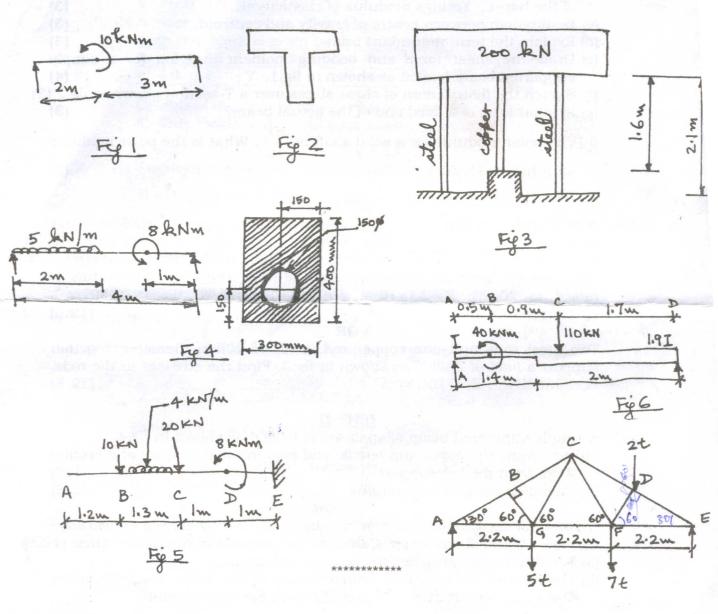


END TERM EXAMINATION

THIRD SEMESTER [B.TECH.] DECEMBER-2010 Paper Code: ETCE201 Subject: Structural Analylsis-I Time: 3 Hours Maximum Marks:75 Note: Attempt five questions. Graph paper is required. (a) Express 2.0GN/m² in N/mm² units. (b) What is the deformation in a metal bar, hanging freely along the vertical axis, under its own weight? Total weight of the bar=W, Length of the bar=L, Youngs modulus of elasticity=E. (c) Distinguish between centre of gravity and centroid. (3) (d) Explain the term redundant frame. (3) (e) Draw the shear force and bending moment diagram for a simply supported beam loaded as shown in fig.1. (f) Sketch the distribution of shear stress over a T-section shown in fig.2.(3) (g) In what form is a fixed end of the actual beam? (h) The polar modulus for a solid shaft is $\frac{\pi D^3}{16}$. What is the polar modulus for a hollow shaft? (3) UNIT-I 02 A steel tube of 32mm external diameter and 20mm internal diameter encloses a copper rod of 16mm diameter, to which it is rigidly joined at each end, at a temperature of 10°C, when there is no longitudinal stress. Calculate the stresses in the rod and the tube when the temperature is raised to 200°C. $E_s=2.1\times10^5MN/m^2$, $\alpha_s=11\times10^{-6}/°C$, $E_c=1\times10^5MN/m^2$, $\alpha_c = 18 \times 10^{-6} / {}^{\circ}\text{C}$. (12.5)OR Two steel rods and one copper rod, each of 20mm diameter, together support a load of 200kN as shown in fig.3. Find the stresses in the rods. $E_s = 205 GN/m^2$, $E_c = 110 GN/m^2$. UNIT-II Q3 A simply supported beam of span 4m is loaded as shown in fig.4. (a) Determine the maximum tensile and compressive stresses at a section 2.2m from the left support. (10)(b) Calculate the section modulus. (2.5)OR A timber beam 150mmx200mm is to be reinforced by bolting on two steel flitches: 150x12.5mm² each. Calculate the moment of resistance when-(12.5) (a) The flitches are attached at the top and bottom. (b) The flitches are attached symmetrically at the sides. ft max=6N/mm², find $f_{s \text{ max}}$ in each case. $E_s=2x10^5N/mm^2$, $E_t=1x10^4N/mm^2$. UNIT-III 04 Determine θ_A , θ_B y_A and y_B for the cantilever beam loaded as shown in fig.5 using Macaulay's method E=2x105N/mm², I=2x108mm⁴. (12.5)Determine θ_A , θ_B , θ_D and y_{max} for the beam loaded as shown in fig.6 using

conjugate beam method. E=2x105N/mm², I=1.5x108mm⁴.


(12.5)

UNIT-IV

- Q5 A solid shaft of 19cm diameter has the same cross-sectional area as a hollow shaft of the same material with inside diameter of 14cm.
 - (a) Find the ratio of horse powers transmitted by the two shafts at the same angular velocity. (6)
 - (b) Compare the angles of twist in equal lengths of these shafts, when stressed to the same intensity. (6.5)

OR

Determine the nature and magnitude of the forces in the members of the trees shown in fig.7. (12.5)

