Con. 2599-09. (REVISED COURSE) VR-382			322
(2	N.B.	(3 Hours) [Total Marks: (1) Question No. 1 is compulsory. (2) Attempt any four questions out of remaining six questions. (3) Assume any suitable data if required. (4) Figures to right indicates full marks.	2)
1.	Sol	ve the following :— (a) Convert p(3, 45°, 60°) in — (i) Cartesian (ii) Cylindrical co-ordinate system. (b) If ∇ x V = 0. Find constant a, b and c. So that — V = (x + 2y + az) âx + (bx - 3y - z) ây + (4x + cy + 2z)âz	20
		is irrotational. (c) State Coulombs Law in Electrostatics. (d) Explain Method of Images.	
2.		Find Electric field intensity due to infinite line charge, A spherical charge distribution is given by — $ \rho_V = \rho_0 \left[\ 1 - \frac{r^2}{a^2} \ \right] \text{for} 0 \leq r \leq a $	10
		Find \overline{E} at $\frac{r}{a} = 0.745$.	1
3.	(a)	Prove that the divergence of electric field and that of electric flux density in a charge free region is zero.	10
	(b)	A total charge of $\frac{40}{3}$ hc is uniformly distributed over a circular ring of radi 2 m placed on $z = 0$ plane with center at origin. Find electric potential at $(0, 0, 5)$.	10
4.	(a) (b)	State Uniqueness Theorem and give its proof. Prove that a static electric field is irrotational and the static magnetic field is solenoidal.	10 10
5.	(a)	Derive formula to find Magnetic intensity due to infinite long straight conductor on z-axis by Biot-Savart's law.	10
	(b)	State Ampere Circuital Law and find H due to straight current carrying conductor on Z axis at point P.	10
6.		Explain Scalar and Vector Magnetic potential. Define poynting vector. Obtain the integral form of poynting theorem and explain each term.	10 10
7.		A 10 GHz plane wave travelling in free space has an amplitude $E_X = 10$ V/m. Find V, λ , β and η also find \overline{H} .	10

(b) What is Wave Impedance or Intrensic Impedance ? Calculate wave impedance 10

for free space.