ADMISSION TEST-2009

B. Sc. (Hons.) in Mathematics and Computing INSTITUTE OF MATHEMATICS AND APPLICATIONS BHUBANESWAR

DATE: 28.06.2009

FULL MARKS: 200 TIME: 2 Hours

Answer as many questions as you can. Circle the correct answer(s) in the answer book. (Do not guess as there is a penalty for wrong answer.)

- 1. Which of the following are correct?
 - (a) $A \subseteq A^c$, if and only if $A = \emptyset$.
 - (b) $A^c \subseteq A$, if and only if A = X, where X is the universal set.
 - (c) If $A \cup B = A \cup C$, then B = C.
 - (d) A = B is equivalent to $A \cup C = B \cup C$ and $A \cap C = B \cap C$.
- 2. For real numbers x and y, define a relation R by xRy, if and only if $x-y+\sqrt{2}$ is an irrational number. Then the relation R is
 - (a) reflexive.
 - (b) symmetric.
 - (c) transitive.
 - (d) an equivalence relation.
- 3. If A = B = [-1, 1], $C = [0, \infty)$, $R_1 = \{(x, y) \in A \times B : x^2 + y^2 = 1\}$ and $R_2 = \{(x, y) \in A \times C : x^2 + y^2 = 1\}$, then
 - (a) R_1 defines a function from A into B.
 - (b) R_2 defines a function from A into C.
 - (c) R_2 defines a function from A onto C.
 - (d) R_2 defines a one-one function from A onto C.
- 4. The locus of the points z satisfying the condition |z+i|+|z-i|=k is an ellipse, provided
 - (a) $k \in (-2, 2)$.
 - (b) $k \in (-2,0) \cup (0,2)$.
 - (c) $k \in (0, 2)$.
 - (d) $k \in (2, \infty)$.
- 5. If $\frac{(1+i)x-2i}{3+i}+\frac{(2-3i)y+i}{3-i}=i$, then the values of x and y are given by
 - (a) x = -3, y = -1.
 - (b) x = 3, y = -1.

- (c) x = 3, y = 1.
- (d) x = -1, y = 3.
- 6. If z is a complex number, then the system of equations $|z+1-i|=\sqrt{2}$ and |z|=3 has
 - (a) no solution.
 - (b) one solution.
 - (c) two solutions.
 - (d) none of these.
- 7. Two students while solving a quadratic equation in the variable x, one copied the constant term incorrectly and got the roots 3 and 2. The other copied the constant term and the coefficient of x^2 correctly and got the roots as -6 and 1, respectively. The correct roots of the equation are
 - (a) 3 and -2.
 - (b) -3 and 2.
 - (c) -6 and -1.
 - (d) 6 and -1.
- 8. If A is an $n \times n$ non-singular matrix, then $\operatorname{adj}(\operatorname{adj}(A)) =$
 - (a) $|A|^{n-1}A$.
 - (b) $|A|^{n-2} A$.
 - (c) $|A|^{n-1} A$.
 - (d) $|A|^{n-2}A$.
- 9. If a, b, c are non-zero real numbers such that $\begin{vmatrix} bc & ca & ab \\ ca & ab & bc \\ ab & bc & ca \end{vmatrix} = 0$, then
 - (a) $\frac{1}{a} + \frac{1}{b\omega} + \frac{1}{c\omega^2} = 0.$
 - (b) $\frac{1}{a} + \frac{1}{b\omega^2} + \frac{1}{c\omega} = 0.$
 - (c) $\frac{1}{a\omega} + \frac{1}{b\omega^2} + \frac{1}{c} = 0$.
 - (d) All the above are true.
- 10. The system of equations: x + y + z = 6, x + 2y + 3z = 10, x + 2y + mz = n have infinite number of solutions, if
 - (a) m = 3 and $n \in \mathbb{R}$.
 - (b) $m = 3 \text{ and } n \neq 10.$
 - (c) m = 3 and n = 10.
 - (d) none of these.
- 11. If x, y and z are positive real numbers such that $x + y + z = \alpha$, then
 - (a) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{\alpha}$.

- (b) $(\alpha x)(\alpha y)(\alpha z) \ge 8xyz$.
- (c) $(\alpha x)(\alpha y)(\alpha z) \le \frac{8}{27}\alpha^3$.
- (d) All the above are true.
- 12. If a, b, $c \in \mathbb{R}$ and a+b+c=0, then the quadratic equation: $4ax^2+3bx+2c=0$ has
 - (a) one positive and one negative root.
 - (b) imaginary roots.
 - (c) real roots.
 - (d) None of these.
- 13. If a function f satisfies the condition $f\left(x+\frac{1}{x}\right)=x^2+\frac{1}{x^2}$ $(x\neq 0)$, then f(x) equals
 - (a) $x^2 2$ for all $x \in \mathbb{R}$.
 - (b) $x^2 2$ for all $x \neq 0$.
 - (c) $x^2 2$ for all x satisfying $|x| \ge 2$.
 - (d) $x^2 2$ for all x satisfying |x| < 2.
- 14. Two non-zero distinct numbers a, b are used as elements to make determinants of third order. The number of determinants whose value is zero for all a, b is
 - (a) 24.
 - (b) 32.
 - (c) a + b.
 - (d) none of these.
- 15. If the sum of the coefficients in the expansion of $(\alpha x^2 2x + 1)^{37}$ is equal to the sum of the coefficients in the expansion of $(x \alpha y)^{37}$, then α is equal to
 - (a) 0.
 - (b) 1.
 - (c) may be any real number.
 - (d) no such value exists.
- 16. $\lim_{x\to 0} \left(1^{\csc^2 x} + 2^{\csc^2 x} + 3^{\csc^2 x} + \dots + n^{\csc^2 x}\right)^{\sin^2 x} =$
 - (a) 0.
 - (b) $\frac{n}{2}$.
 - (c) n.
 - (d) none of these.
- 17. If $f(x) = \begin{cases} \sin[x], & [x] \neq 0 \\ 0, & [x] = 0 \end{cases}$, where [x] is the greatest integer $\leq x$, then $\lim_{x \to 0} f(x) = \int_{0}^{x} f(x) dx$
 - (a) 0.
 - (b) 1.
 - (c) -1.
 - (d) does not exist.

- 18. The values of α and β such that $\lim_{x\to 0} \frac{x(1+\alpha\,\cos x)-\beta\,\sin x}{x^3}=1$ are
 - (a) $\frac{5}{2}$, $\frac{3}{2}$.
 - (b) $\frac{5}{2}$, $-\frac{3}{2}$.
 - (c) $-\frac{5}{2}$, $-\frac{3}{2}$.
 - (d) $-\frac{5}{2}$, $\frac{3}{2}$.
- 19. If $f(x) = \sqrt{1 \sqrt{1 x^2}}$, then f is
 - (a) continuous on [-1,1] and differentiable on (-1,1).
 - (b) continuous on [-1,1] and differentiable on $(-1,0) \cup (0,1)$.
 - (c) continuous and differentiable on [-1, 1].
 - (d) None of these.
- 20. If $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, then
 - (a) f and f' are continuous at x = 0.
 - (b) f is differentiable at x = 0.
 - (c) f is differentiable at x = 0 and f' is not continuous at x = 0.
 - (d) (b) and (c) are true.
- 21. If x + |y| = 2y, then y as a function of x is
 - (a) defined for all x.
 - (b) continuous at x = 0.
 - (c) such that $\frac{dy}{dx} = \frac{1}{3}$ for x < 0.
 - (d) such that (a), (b) and (c) are true.
- 22. On which of the following intervals is the function $f(x) = 2x^2 \log|x|$ ($x \neq 0$) increasing?
 - (a) $\left(\frac{1}{2}, \infty\right)$.
 - (b) $\left(-\infty, -\frac{1}{2}\right) \cup \left(\frac{1}{2}, \infty\right)$.
 - (c) $\left(-\infty, -\frac{1}{2}\right) \cup (0, \infty)$.
 - (d) $\left(-\frac{1}{2},0\right) \cup \left(\frac{1}{2},\infty\right)$.
- 23. All points on the curve $y^2 = 4a\left(x + a\sin\frac{x}{a}\right)$ at which the tangents are parallel to the X-axis, lie
 - (a) on a circle.
 - (b) on a parabola.
 - (c) on a straight line.
 - (d) on an ellipse.

24. The value of $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \cdots \tan 89^{\circ}$ is
(a) 0.
(b) $\frac{1}{2}$.
(c) 1.
(d) -1 .

- 25. The value of θ for which $\cos\theta+\sqrt{3}\sin\theta=2$ is
 - (a) $\frac{\pi}{3}$.
 - (b) $\frac{2\pi}{3}$.
 - (c) $\frac{4\pi}{3}$.
 - (d) $\frac{5\pi}{3}$.
- 26. $2 Tan^{-1} \left(\frac{1}{3}\right) + Tan^{-1} \left(\frac{1}{7}\right) =$
 - (a) $Tan^{-1}\left(\frac{49}{29}\right)$.
 - (b) $\frac{\pi}{2}$.
 - (c) $\frac{\pi}{4}$.
 - (d) 0.
- 27. The largest term in the sequence $a_k = \frac{k}{k^2 + 100}$ is
 - (a) a_5 .
 - (b) a_7 or a_8 .
 - (c) a_{10} .
 - (d) a_{99} .
- 28. The number of positive unequal integral solutions of the equation x + y + z = 6 is
 - (a) 3!.
 - (b) 4!.
 - (c) 5!.
 - (d) $2 \times 4!$.
- 29. The number of ways in which 6 red roses and 3 white roses can form a garland so that all the white roses come together is
 - (a) 2170 (b) 2165 (c) 2160 (d) 2155
- 30. A point is selected at random from the interior of a circle. The probability that the point is closer to the centre than the circumference of the circle is
 - (a) $\frac{1}{4}$.
 - (b) $\frac{1}{2}$.

- (c) $\frac{3}{4}$.
- (d) none of these.
- 31. For two events A and B, if $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$ and $P(A \cup B) = \frac{1}{2}$, then $P\left(\frac{\overline{A}}{\overline{B}}\right)$ is
 - (a) $\frac{3}{4}$.
 - (b) $\frac{2}{3}$.
 - (c) $\frac{1}{6}$.
 - (d) $\frac{1}{8}$.
- $32. \int \frac{\sin 2x}{\sin^4 x + \cos^4 x} \, dx =$
 - (a) $Tan^{-1}(\tan^2 x)$ +constant.
 - (b) $Tan^{-1}(\cot^2 x)$ +constant.
 - (c) $Cot^{-1}(\tan^2 x)$ +constant.
 - (d) $Cot^{-1}(\cot^2 x)$ +constant.
- 33. The value of the integral $\int_0^{3/2} [x^2] dx$ is
 - (a) $2 + \sqrt{2}$.
 - (b) $2 \sqrt{2}$.
 - (c) $4 + 2\sqrt{2}$
 - (d) $4 2\sqrt{2}$.
- 34. The area of the region bounded by the curve |x|+|y|=1 is
 - (a) $\frac{1}{2}$ sq. unit.
 - (b) 1 sq. unit.
 - (c) $\frac{3}{2}$ sq. unit.
 - (d) 2 sq. unit.
- 35. The differential equation for all family of lines which are at a unit distance from the origin is

(a)
$$\left(y - x\frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$$
.

(b)
$$\left(y + x \frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$$
.

(c)
$$\left(y - x\frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$$
.

(d)
$$\left(y + x \frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$$
.

- 36. If the axes are rotated through an angle of 45° in clockwise direction, then the new equation of $x^2 y^2 = a^2$ is
 - (a) $xy a^2 = 0$.
 - (b) $xy 2a^2 = 0$.
 - (c) $2xy a^2 = 0$.
 - (d) $2xy + a^2 = 0$.
- 37. Consider the circles $x^2 + (y-1)^2 = 9$ and $(x-1)^2 + y^2 = 25$. They are such that
 - (a) these circles touch each other.
 - (b) one of the circle lies entirely inside the other.
 - (c) each of these circles lies outside the other.
 - (d) they intersect in two points.
- 38. A line is such that it is inclined to the Y-axis and Z-axis at 60° , then at what angle is it inclined to the X-axis?
 - (a) 45° .
 - (b) 30°.
 - (c) 75° .
 - (d) 60° .
- 39. The equation of the plane which passes through the points (2, 1, -1), (-1, 3, 4) and perpendicular to the plane x 2y + 4z = 0 is
 - (a) 18x + 17y + 4z = 49.
 - (b) 18x 17y + 4z = 49.
 - (c) 18x + 17y 4z = -49
 - (d) 18x + 17y + 4z = -49.
- 40. If (2,3,5) is one end of the diameter of the sphere $x^2 + y^2 + z^2 6x 12y 2z + 20 = 0$, then the co-ordinates of the other end of the diameter are
 - (a) (4, 3, 5).
 - (b) (4,3,-3).
 - (c) (4, 9, -3).
 - (d) (3, 9, -3).