ADMISSION TEST-2008

B. Sc.(Honours) in Mathematics and Computing INSTITUTE OF MATHEMATICS AND APPLICATIONS BHUBANESWAR

DATE : 29.06.2008

Answer all questions. Wrong answers are liable to be penalized.

1. If the sets A and B are defined as $A=\left\{(x, y): y=e^{x}, x \in \mathbb{R}\right\}$ and $B=\{(x, y): y=x, x \in \mathbb{R}\}$, then
(a) $A \subset B$
(b) $B \subset A$
(c) $A \cap B=\emptyset$
(d) $A \cup B=A$
2. A and B are two sets having 3 and 4 elements respectively and 2 elements in common. Then the number of relations which can be defined from the set A to B is
(a) 2^{5}
(b) 2^{10}
(c) $2^{12}-1$
(d) None of these
3. The complex number $\frac{2^{50}}{(1-i)^{100}}+\frac{(1+i)^{100}}{2^{50}}$ is equal to
(a) 0
(b) 1
(c) i
(d) -2
4. The locus of the complex numbers z satisfying the equation $\left|\frac{z-5 i}{z+5 i}\right|=1$ is
(a) X-axis.
(b) the straight line $y=5$.
(c) the straight line $x+y=5$.
(d) a circle passing through the origin.
5. Which of the following is/are incorrect?
(i) Adjoint of a symmetric matrix is symmetric.
(ii) Adjoint of a unit matrix is a unit matrix.
(iii) Adjoint of a diagonal matrix is a diagonal matrix.
(iv) If A is a singular matrix, then $A(\operatorname{adj}) A$ is the null matrix.
(a) (i)
(b) (ii)
(c) (ii) and (iv)
(d) (iii)
6. The system of equations : $2 x-y+z=0, x-2 y+z=0, \alpha x-y+2 z=0$ have non-trivial solutions for
(a) $\alpha=-5$
(b) $\alpha=1$
(c) $\alpha=5$
(d) no real value of α.
7. If x satisfies the inequality: $|x-1|+|x-2|+|x-3| \geq 6$, then
(a) $0 \leq x \leq 4$.
(b) $x \leq 0$ or $x \geq 4$.
(c) $x \leq-2$ or $x \geq 4$.
(d) None of these.
8. If $x^{2}+p x+q=0$ and $x^{2}+q x+p=0$ have a common root, then
(a) $p=q$ only.
(b) $p+q+1=0$ only.
(c) either $p=q$ or $p+q+1=0$.
(d) None of these.
9. Let $n(>1)$ be a positive integer. Then the largest integer k such that $\left(n^{k}+1\right)$ divides $1+n+n^{2}+\cdots+n^{255}$ is
(a) 16
(b) 32
(c) 64
(d) 128
10. Total number of ways in which six ${ }^{\prime}+{ }^{\prime}$ and four ${ }^{\prime}-{ }^{\prime}$ signs can be arranged in a line such that no two ${ }^{\prime}-{ }^{\prime}$ signs occur together is
(a) 27
(b) 35
(c) 42
(d) 57
11. Let A and B be two sets such that $n(B)=2$ and the number of mappings from A to B which are onto is 30 . Then the number of elements in the set A is
(a) 3
(b) 5
(c) 7
(d) 8
12. For two events A and B, if $P(A)=P(A \mid B)=\frac{1}{4}$ and $P(B \mid A)=\frac{1}{2}$, then
(a) A and B are independent events.
(b) A and B are mutually exclusive events.
(c) $P\left(A^{\prime} \mid B\right)=\frac{1}{2}$.
(d) $P\left(B^{\prime} \mid A^{\prime}\right)=\frac{3}{4}$.
13. The function $f(x)=(x+2) e^{-x}(x \in \mathbb{R})$ is
(a) decreasing for all x.
(b) decreasing in $(-\infty,-1)$ and increasing in $(-1, \infty)$.
(c) increasing for all x.
(d) decreasing in $(-1, \infty)$ and increasing in $(-\infty,-1)$.
14. The value of $\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \cos t^{2} d t}{x}$ is
(a) -1
(b) 0
(c) 1
(d) None of these.
15. The values of α and β for which the function

$$
f(x)= \begin{cases}-2 \sin x, & x \leq-\pi / 2 \\ \alpha \sin x+\beta, & -\pi / 2<x<\pi / 2 \\ \cos x, & x \geq \pi / 2\end{cases}
$$

is continuous everywhere are
(a) $\alpha=1, \beta=1$
(b) $\alpha=0, \beta=1$
(c) $\alpha=-1, \beta=0$
(d) $\alpha=-1, \beta=1$
16. The function $f(x)=\left\{\begin{array}{ll}x^{k} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ is continuous but not differentiable at $x=0$ if
(a) $k \in(0,1]$
(b) $k \in[1, \infty)$
(c) $k \in(-\infty, 0)$
(d) $k=0$
17. The function $f(x)=|x|+|x-1|$ is
(a) continuous at $x=0,1$ but not differentiable at $x=0,1$.
(b) both continuous at $x=0,1$ and differentiable at $x=0,1$.
(c) continuous at $x=0,1$, differentiable at $x=0$ but not differentiable at $x=1$.
(d) not continuous at $x=0,1$ but differentiable at $x=0,1$.
18. Let f be a continuous function in \mathbb{R} such that $f(x+y)=f(x)+f(y)$. Then the value of $\int_{-2}^{2} f(x) d x$ is
(a) 0
(b) $f(2)$
(c) $f(-2)$
(d) $2 \int_{0}^{2} f(x) d x$
19. $\int_{0}^{\pi / 2} \frac{e^{\sin x}}{e^{\sin x}+e^{\cos x}} d x=$
(a) π
(b) $\pi / 2$
(c) $\pi / 4$
(d) $\pi / 8$
20. The area between the curve $y=1-|x|$ and the X-axis is
(a) $1 / 2$ sq. unit
(b) 1 sq. unit
(c) 2 sq. unit
(d) None of these.
21. The equation of the tangent to the curve $y=2 e^{-x / 3}$, where it crosses the Y-axis is
(a) $\frac{x}{3}+\frac{y}{2}=1$.
(b) $\frac{x}{2}+\frac{y}{3}=1$.
(c) $3 x-2 y=1$.
(d) $2 x+3 y=1$.
22. The value of θ satisfying the equation $\cos \theta+\sqrt{3} \sin \theta=2$ is
(a) $\pi / 3$
(b) $2 \pi / 3$
(c) π
(d) $4 \pi / 3$
23. The coordinates of the points which lie on the line $x+y=4$ and whose distance from the line $4 x+3 y=10$ is unity, are
(a) $(3,1),(-9,13)$
(b) $(3,1),(-7,11)$
(c) $(5,-1),(-9,13)$
(d) $(1,3),(-7,11)$
24. The circles $x^{2}+y^{2}-10 x+16=0$ and $x^{2}+y^{2}=r^{2}$ intersect each other at two distinct points provided
(a) $r<2$
(b) $r>8$
(c) $2<r<8$
(d) $2 \leq r \leq 8$
25. The number of common tangents to the circles $x^{2}+y^{2}-x=0$ and $x^{2}+y^{2}+x=0$ is
(a) 1
(b) 2
(c) 3
(d) 4

