E. Sem 5 (Rev)

Etrx. Continuous Time Signals \& systems 27/12/08 Con. 5626-08.

RC-6470,

## (REVISED COURSE)

(3 Hours)
[ Total Marks : 100
N.B. (1) Question No. $\mathbf{1}$ is compulsory.
(2) Answer any four out of remaining six questions.
(3) Assume suitable data if necessary.
(4) Figures to the right indicate marks.

1. Attempt any four of the following :-
(a) Find whether following signals are Energy or Power. Find corresponding Energy/ Power if.
(i) $x(t)=A \cdot e^{-a t} u(t), \quad a>0$
(ii) $x(t)=\operatorname{rect}\left(\frac{t}{T_{0}}\right)$.
(b) Determine whether following signals are periodic or non periodic
(i) $x[n]=5 \cos [0.2 \pi n]$
(ii) $\mathrm{x}(\mathrm{t})=\sin (2 \mathrm{t})+\sin (2 \pi \mathrm{t})$
(c) Classify the following system on the basis of Linearity, Causality and Time Variance.

$$
\frac{d}{d t} y(t)+10 y(t)=x(t)
$$

(d) Express $x(t)$ as shown in figure using unit step signal

(e) For the signal $x(t)$ shown below sketch

$$
y(t)=x(t) \cdot[\delta(t+3 / 2)-\delta(t-3 / 2)]
$$


2. (a) Sketch $x(t)$ if

$$
x(t)=2 u(t)-u(t-2)+u(t-4)-r(t-6)+r(t-8)
$$

$$
\text { Hence obtain } x(2 t+2)
$$

(b) Convolve the following signals-

3. (a) A continuous time LTI system is described by following differential equation-

$$
2 \frac{d^{3}}{d t^{3}} y(t)+3 \frac{d^{2}}{d t^{2}} y(t)+4 \frac{d y}{d t} y(t)+6 y(t)=2 x(t)
$$

Obtain the State Model for the given system.
(b) Find the state transition matrix $\mathrm{e}^{\mathrm{At}}$ for the following model-

$$
A=\left[\begin{array}{cc}
\frac{3}{4} & 0 \\
\frac{-1}{2} & \frac{1}{2}
\end{array}\right]
$$

(c) Determine the impulse response of the system described by the equation

$$
y(t)=4 y(t)-y(t)+4 x(t)+2 x(t)
$$

4. (a) Find the exponential Fourier series expansion of the following signal-

(b) From the Fourier Transform shown below. Evaluate the following time domain expressions-
(i) $E=\int_{-\infty}^{\infty}|x(t)|^{2} d t$
(ii) $D=\frac{d}{d t} x(t)$

5. (a) Find the Fourier transform of Gate function shown:

(b) Find the Fourier transform of following function $f(t)$.

$$
f(t)= \begin{cases}e^{-a t} & \text { for } t \geq 0 \\ -e^{\text {at }} & \text { for } t \leq 0\end{cases}
$$

Using the result of above obtain Fourier Transform of $x(t)$ as shown below :

(c) State and prove convolution property of Fourier Transform in Time domain.
6. (a) Find Laplace Transform of the signal shown below :


Con. 5626-RC-6470-08.
(b) Determine the initial and final values of the function whose Laplace Transform is given by-

$$
X(s)=\frac{5 s+50}{s(s+5)}
$$

(c) State and prove following properties of Laplace Transform in Time domain:
(i) Time Scaling
(ii) Differentiation
7. (a) The differential equation of the system is given as

$$
\frac{d^{2} y(t)}{d t^{2}}+\frac{3 d y(t)}{d t}+2 y(t)=x(t)
$$

with $y\left(0^{+}\right)=3$ and $\left.\frac{d y}{d t}(t)\right|_{t=0}=-5$
Determine the output for $x(t)=2 u(t)$
(b) Obtain the inverse Laplace Transform of :

$$
X(s)=\frac{3 s+7}{\left(s^{2}-2 s-3\right)}
$$

For all possible region of convergence.

