Total No. of Questions: 12]

[Total No. of Printed Pages: 6

[3661]-16

F. E. Examination - 2009

ENGINEERING MATHEMATICS - II

(2003 Course)

Time: 3 Hours

[Max. Marks: 100

Instructions:

- (1) In section I, attempt Q. No. 1 or Q. Vo. 2, Q. No. 3 or
- Q. No. 4, Q. No. 5 or Q. No. 6.

 (2) In section II, attempt Q. No. 7 or No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12.
- (3) Answers to the two sections smuld be written in separate answer-books.
- (4) Figures to the right indicate full marks.
- (5) Neat diagrams must be drawn wherever necessary.(6) Use of non-programmable electronic pocket calculator is allowed.
- (7) Assume suitable date necessary.

SECTION - I

- Q.1) (A) Form the differential equation of family of circles of fixed radius a and centre positive side of y-axis. [05]
 - (B) Solve any three of the following Differential Equations: [12]

(1)
$$\left[1 + e^{x}\right] dx + e^{x} \cdot \left[1 - \frac{x}{y}\right] dy = 0$$

(2)
$$y \frac{dy}{dx} = (1 - x\cos y) \cos y$$

(3) $(3y - 7x + 7) dx + (7y - 3x + 3) dy = 0$

$$(3y - 7x + 7) dx + (7y - 3x + 3) dy = 0$$

(4)
$$\left[xy^2 - e^{-\frac{1}{x^3}} \right] dx - x^2y dy = 0$$

$$(5) \quad \frac{\mathrm{dy}}{\mathrm{dx}} = (x + y + 1)$$

OR

Q.2) (A) Form the differential equation whose general solution is:

$$y = A \cdot e^{-2x} + B \cdot e^{-3x}$$
 [05]

(B) Attempt any three of the following Differential Equations: [12]

$$(1) \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 1 - x \ \tan (x - y)$$

(2)
$$(y^3 - 2x^2y) dx + (2xy^2 - x^3) dy = 0$$

(3)
$$(y^4 + 2y) dx + (xy^3 + 2y^4 - 4x) dy = 0$$

(2)
$$(y^3 - 2x^2y) dx + (2xy^2 - x^3) dy = 0$$

(3) $(y^4 + 2y) dx + (xy^3 + 2y^4 - 4x) dy = 0$
(4) $(x^2y^2 + 5xy + 2) y \cdot dx + (x^2y^2 + 4xy + 2) x \cdot dy = 0$

(5)
$$\cos x \frac{dy}{dx} + y \sin x = \sec x$$

- Q.3) Solve any three of the following:
 - The distance 'x' descended by a person falling freely under gravity by means of a parachute, satisfy the differential equation

$$\left(\frac{dx}{dt}\right)^2 = k^2 \left[1 - e^{\frac{-2gx}{k^2}}\right]$$
 where g and k are constants. If he falls

from rest, show that
$$x = \frac{k^2}{g} \log \cosh \left(\frac{gt}{k}\right)$$
 [06]

The series electrical circuit consisting of inductance 'L' and resistance 'B' is connected to e.m.f. $E_o \cdot e^{-at}$, where E_o and a are constants. Show that the current as a function of time is given by

$$i = \sum_{a} \left[e^{-at} - e^{-\frac{R}{L}t} \right]$$
 [05]

(c) The steady heat flow through the spherical shell of radius $r (r_1 \le r \le r_2)$ satisfy the differential equation

r.
$$\frac{d^2u}{dr^2} + 2 \frac{du}{dr} = 0$$
, if temperature $u = u_1$ when $r = r_1$ and

$$u = u_2$$
 when $r = r_2$. Find the temperature u interms of r. [06]

(d) A body cools from 100°C to 70°C in 15 minutes when surrounding temperature is 30°C. Find time when the temperature of the body will be 40°C [05]

OR

- Q.4) Attempt any three of the following:
 - (a) Find the Orthogonal Trajectories of $x^2 + 2y^2 = c$ [05]
 - (b) Find the current 'i' in a circuit consisting of resistance 50 ohms and condenser of capacity 0.02 Farad in a series with e.m.f. 10sin(2t). [05]
 - (c) A steam pipe 20cm in diameter is protected with a covering 6cm thick for which k = 0.0003, in steady state. Find the heat loss per hour through a meter length of the pipe, if the surface of the pipe is at 200°C and the outer surface of covering is at 30°C.
 - (d) An elastic string of natural length 'l' is fixed at a point A. To the lower end of it, a particle of mass 'm' is attached so that the spring is stretched to the length '2l'. If the particle is dropped from A, show that it descends a distance $l\left(2 + \sqrt{3}\right)$ before coming to rest. [06]
- Q.5) (A) Find the equation of sphere that touches the given sphere $x^2 + y^2 + z^2 x + 2y + 2z 3 = 0$ at the point (1, 1, -1) and passing through the point (0, 0, 3). [06]
 - (B) Find the equation of right circular cylinder of radius '3' with axis along the line x + 2 = 0 = x 2y + 4 [05]
 - (C) Find the equation of cone generated by rotating the line 2x + 3y = 6, z = 0, about y-axis. [05]

OR

- **Q.6)** (A) Show that the plane 4x 3y + 6z = 35, is tangential to the sphere $x^2 + y^2 + z^2 - y - 2z - 14 = 0$; and find the point of contact. [06]
 - Find the equation of right circular cone with vertex at origin and axis as the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and semi-vertical arise 30°. [05]
 - (C) Find the equation of cylinder whose generator is parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and guiding curve is $x^2 + 2y^2 = 1$, z = 3.

SECTION II •

(A) Obtain Fourier Series Expansion for the function

$$f(x) = x - x^2, -1 \le x \le 1$$

(B) Establish the Reduction formula connecting

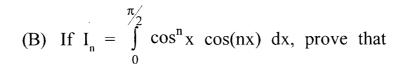
$$I_n$$
 to I_{n-2} , where $I_n = \int_0^{\pi/2} x \sin^n x dx$ [05]

(C) Evaluate
$$\int_{2}^{5} \sqrt{(x-2)^{2}(5-x)^{9}} \cdot dx$$
 [04]

Q.8) (A) The following the gives the vibration of periodic current over a period.

Т:	0	$\frac{T}{6}$	$\frac{\mathrm{T}}{\mathrm{3}}$	$\frac{\mathrm{T}}{2}$	$\frac{2T}{3}$	$\frac{5T}{3}$	Т
A	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

the by periodic harmonic analysis, that there is direct current part of 0.75 amp. in variable current and obtain the amplitude of first harmonic. [08]



$$I_{n} = \frac{1}{2} \cdot I_{n-1} = \frac{\pi}{2^{n+1}}$$
 [05]

(C) Show that
$$\beta$$
 (m, n) = $\int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$ [04]

- (A) Trace any two of the following curves: [08]
 - (1) $y^2 (x^2 + 4) = x^2 + 2x$
 - (2) $r = 1 + 2\cos\theta$
 - (3) $x = a (\theta \sin \theta)$ $y = a (1 - \cos \theta)$

(B) Show that
$$\operatorname{Erf}_{c}(-x) = 2 - \operatorname{Erf}_{c}(x)$$
 [04]

Erf_c(-x) = 2 - Erf_c(x) [04]
(C) Evaluate :
$$\int_{0}^{a} \frac{\log (1 + ax)}{1 + x^{2}} dx$$
[05]

Q.10) (A) Trace the curve (Any Two)
$$(1) xy^2 = a(x^2 - a^2), a > 0$$
[08]

- (2) $x^{2/3}$ $x^{2/3} = a^{2/3}$

(3)
$$r = a \cos(3\theta)$$

(B) If $\chi(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{x} e^{-\left(\frac{t^{2}}{2}\right)}$ dt, show that

$$\operatorname{Erf}(\mathbf{x}) = \alpha \left[\mathbf{x} \sqrt{2} \right]$$
 [04]

(C) Find the length of one loop of the curve $r^2 = a^2 \cdot \cos(2\theta)$. [05]

- Q.11) (A) Evaluate $\iint_R xy(x+y) dx dy$, where 'R' is the region bounded by $y = x^2$ and $y^2 = -x$. [05]
 - (B) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{dxdydz}{(1 + x^2 + y^2 + z^2)^2}$ [06]
 - (C) Find the area inside the cardioid $r = 2a \left(1 + \cos\theta\right)$ outside the curve $r = \frac{2a}{(1 + \cos\theta)}$.
- Q.12) (A) Find Mean Value (M.V) and Root Mean Square (R.M.S.) value of the ordinate of the cycloid $x = a (\theta + \sin \theta)$, over the range $y = a (1 \cos \theta)$, $\theta = -\pi$ [05]
 - (B) Find the volume of the region enclosed by the cone $z = \sqrt{x^2 + y^2}$ and paraboloid $z = x^2 + y^2$. [06]
 - (C) Find the centre of gravity of one loop of the curve $r = a\sin(2\theta)$. [05]