Total No. of Questions: 6]

[Total No. of Printed Pages: 3

[3861]-159

F. E. (Semester - II) Examination - 2010

APPLIED SCIENCE - II

(PHYSICS)

(2008 Pattern)

Time: 2 Hours]

Max. Marks: 50

Instructions:

- (1) All questions are compulsory.
- (2) Black figures to the right redicate full marks.
- (3) Neat diagrams must be chawn wherever necessary.
- (4) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- (5) Assume suitable data, if necessary.

Constants : $h = 6.63 \times 10^{-34} \text{ J-S}$

 $C = 3 \times 10^8$ m/sec.

 $m_e = 9.1 \times 10^{-31} \text{ kg}$

 $m_p = 1.677 \text{ kg}$

 $e = 1.6 \times 10^{-19} \text{ C}$

- Q.1) (A) What o you understand by the Wave Function of a Moving Particle? What does square of the Wave Function signify? [06]
 - (B) Explain Group Velocity and Phase Velocity. Derive expression for Group Velocity with which a Wave Group Travels. [07]

At what Kinetic Energy an Electron will have a Wavelength of 5000A°? [04]

OR

1

Q.2)	(A)	Obtain three dimensional time independent Schrödinger's Wave Equation.	[07]
	(B)	State and explain Heisenberg's Uncertainty Principle. Illustrate this principle by diffraction of a beam of electrons by a narrow slit.	[06]
	(C)	Compute energy difference between the ground state and first excited state for an electron in a one-dimensional rigid box of length 10^{-8} cm.	[04]
Q.3)	(A)	Explain construction and working principle of Ruby LASER.	[07]
	(B)	Explain what is the significance of critical temperature, critical magnetic field and critical current density for Superconductors.	[06]
	(C)	Elaborate on any two applications of Superconductors.	[04]
Q.4)	(A)	Explain how BCS Theory plains Superconductivity ?	[07]
	(B)	Describe propagation mechanism of light wave in Optical Fibres.	[06]
	(C)	Explain the terms . Optical Pumping, Population Inversion	[04]
Q.5)	(A)	Explain Chenical Vapour Deposition Method for Manufacturing Nano Particles.	[06]
	(B)	What is Hall Effect? Derive relation for Hall Voltage and Hall Coefficient.	[06]
	(C)	Write down an expression for the probability of occupancy of a particular energy state of an electron in an intrinsic semi-conductor. Represent it graphically at 0°k and at room temperature.	[04]
	~	4	ני יו

Q.6	(A)	Describe any two properties of Nano Particles.	[06]
	(B)	Derive an expression for conductivity in an Intrinsic and Extrinsic Semiconductor.	[06]
	(C)	Explain applications of Nano Particles in the field of Medicine and Electronics.	[04]
	•		