
Q.1-30 Carry One Mark Each

- If $x = a(\theta + \sin \theta)$ and $y = a(1 \cos \theta)$, then $\frac{dy}{dx}$ will be equal to 1.
 - (a) $\sin\left(\frac{\theta}{2}\right)$
- (b) $\cos\left(\frac{\theta}{2}\right)$ (c) $\tan\left(\frac{\theta}{2}\right)$ (d) $\cot\left(\frac{\theta}{2}\right)$
- 2. The angle between two unit-magnitude coplanar vectors P(0.86, 0.500,0) and Q(0.259, 0.956, 0) will be
 - (a) 0°
- (b) 30°
- (c) 45°
- (d) 60°
- The sum of the eigen values of the matrix given below is $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \end{pmatrix}$ 3.
 - (a) 5

(b) 7

- (d) 18
- 4. The figure shows a pin-jointed plane truss loaded at the point M by hanging a mass of 100 kg. The member LN of the truss is subjected to a load of
 - (a) 0 Newton
 - (b) 490 Newtons in compression
 - (c) 981 Newtons in compression
 - (d) 981 Newtons in tension

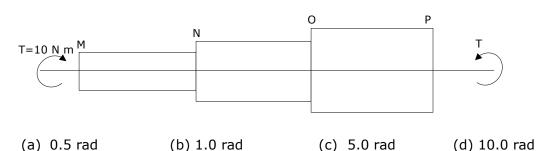
- 5. In terms of Poission's ratio (v) the ratio of Young's Modulus (E) to Shear Modulus (G) of elastic materials is
 - (a) 2(1 + v)
- (b) 2(1 v)
- (c) $\frac{1}{2}(1+v)$ (d) $\frac{1}{2}(1-v)$
- 6. Two mating spur gears have 40 and 120 teeth respectively. The pinion rotates at 1200 rpm and transmits a torque of 20 N.m. The torque transmitted by the gear is
 - (a) 6.6 Nm
- (b) 20 Nm
- (c) 40 Nm
- (d) 60 Nm

7. The figure shows the state of stress at a certain point in a stressed body. The magnitudes of normal stresses in the x and y direction are 100 MPa respectively. The radius of Mohr's stress circle representing this state of stress is

(b) 80

(c) 60

(d) 40



8. For a mechanism shown below, the mechanical advantage for the given configuration is

(d) 2

- 9. A vibrating machine is isolated from the floor using springs. If the ratio of excitation frequency of vibration of machine to the natural frequency of the isolation system is equal to 0.5, the transmissibility of ratio of isolation is
 - (a) $\frac{1}{2}$ (b) $\frac{3}{4}$ (c) $\frac{4}{3}$
- 10. A torque of 10 Nm is transmitted through a stepped shaft as shown in figure. The torsional stiffnesses of individual sections of lengths MN, NO and OP are 20 Nm/rad, 30 Nm/rad and 60 Nm respectively. The angular deflection between the ends M and P of the shaft is

- 11. In terms of theoretical stress concentration factor (K_t) and fatigue stress concentration factor (K_f) , the notch sensitivity 'q' is expressed as
 - (a) $\frac{\left(K_f-1\right)}{\left(K_t-1\right)}$ (b) $\frac{\left(K_f-1\right)}{\left(K_t+1\right)}$ (c) $\frac{\left(K_t-1\right)}{\left(K_f-1\right)}$ (d) $\frac{\left(K_f+1\right)}{\left(K_t-1\right)}$
- 12. The S-N curve for steel becomes asymptotic nearly at
 - (a) 10^3 cycles (b) 10^4 cycles (c) 10^6 cycles (d) 10^9 cycles
- 13. In the window air conditioner, the expansion device used is
 - (a) capillary tube (b) thermostatic expansion valve
 - (c) automatic expansion valve (d) float valve

(b) dry bulb temperature increases and specific humidity decreases (c) dry bulb temperature decreases and specific humidity increases (d) dry bulb temperature and specific humidity increase At the time of starting, idling and low speed operation, the carburetor 15. supplies a mixture which can be termed as (a) lean (b) slightly leaner than stoichiometric (c) stoichimetric (d) rich 16. One dimensional unsteady state heat transfer equation for a sphere with heat generation at the rate of 'q' can be written as (a) $\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{q}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$ (b) $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{q}{k} = \frac{1}{\alpha} \frac{\partial}{\partial t}$ (d) $\frac{\partial^2}{\partial r^2} (rT) + \frac{q}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial r}$ (c) $\frac{\partial^2 T}{\partial r^2} + \frac{q}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$ An incompressible fluid (kinematic viscosity, 7.4×10^{-7} m² / s, specific gravity, 17. 0.88) is held between two parallel plates. If the top late is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascals on the surface of top plate is (a) 0.651×10^{-3} (b) 0.651 (d) 0.651×10^3 (c) 6.51 Environment friendly refrigerant R134 is used in the new generation 18. domestic refrigerators. Its chemical formula is (a) CH Cl F₂ (b) C₂ Cl₃ F₃ (c) C₂ Cl₂ F₄ (d) C₂ H₂ F₄ A fluid flow is represented by the velocity field $\vec{V} = ax + \vec{i} + ay \vec{j}$, where a is a 19.

During chemical dehumidification process of air

(a) dry bulb temperature and specific humidity decrease

20. A gas contained in a cylinder is compressed, the work required for compression being 5000 kJ. During the process, heat interaction of 200 kJ causes the surroundings to the heated. The change in internal energy of the gas during the process is

constant. The equation of streamline passing through a point (1,2) is

(a) -7000 kJ

(a) x - 2y = 0

(c) 2x - y = 0

14.

(b) -3000 kJ

(c) +3000 kJ (d) +7000 kJ

(b) 2x + y = 0

(d) x + 2y = 0

21.		io of a gas power pla given temperature lim		
	(a) $\left(\frac{T_{\text{max}}}{T_{\text{min}}}\right)^{\frac{\gamma}{2(\gamma-1)}}$	(b) $\left(\frac{T_{\min}}{T_{\max}}\right)^{\frac{\gamma}{2(\gamma-1)}}$	(c) $\left(\frac{T_{\text{max}}}{T_{\text{min}}}\right)^{\frac{\gamma-1}{\gamma}}$	(d) $\left(\frac{T_{\min}}{T_{\max}}\right)^{\frac{\gamma-1}{\gamma}}$
22.	In an interchangeat	ole assembly, shafts	of size $25.000^{+0.04}$	no mate with
	holes of size 25.0 assembly will be	00 ^{-0.000} mm. The ma	ximum possible	clearance in the
	(a) 10 microns		(b) 20 microns	
	(c) 30 microns		(d) 60 microns	
23.	•	of a CNC part progra		
	NO20 GO2 X45.0 Y	'25.0 R5.0 the type o	f tool motion will b	e
	(a) circular Interpola	ation - clockwise		
	(b) circular Interpola	ation - counterclockwi	se	
	(c) linear Interpolat	ion		
	(d) rapid feed			
24.	The mechanism of m	aterial removal in EDI	M process is	
	(a) Melting and Eva	ooration	(b) Melting and	Corrosion
	(c) Erosion and Cav	itation	(d) Cavitation a	nd Evaporation
25.		el sheets are to be s esistance to be 200 n	nicro-ohms and cu	
		erated during the pro	cess will be	
		erated during the pro	cess will be (b) 1 Joule	
	0.2 second, heat ger	erated during the pro		
26.	0.2 second, heat ger (a) 0.2 Joule	-	(b) 1 Joule	
26.	0.2 second, heat ger(a) 0.2 Joule(c) 5 Joule	-	(b) 1 Joule	
26.	0.2 second, heat ger(a) 0.2 Joule(c) 5 JouleIn PERT analysis a cr	-	(b) 1 Joule (d) 1000 Joules	
26. 27.	0.2 second, heat ger(a) 0.2 Joule(c) 5 JouleIn PERT analysis a cr(a) maximum Float(c) maximum CostFor a product, the foand 20 respectively	-	(b) 1 Joule (d) 1000 Joules (b) zero Float (d) minimum Coults I sales for Decembers constant	ost Der 2002 were 25
	0.2 second, heat ger(a) 0.2 Joule(c) 5 JouleIn PERT analysis a cr(a) maximum Float(c) maximum CostFor a product, the foand 20 respectively	ritical activity has orecast and the actua orecast syponential s	(b) 1 Joule (d) 1000 Joules (b) zero Float (d) minimum Coults I sales for Decembers constant	ost Der 2002 were 25

28. There are two products P and Q with the following characteristics

Product	Demand (Units)	Order Cost (Rs/order)	Holding Cost (Rs./unit/year)
Р	100	50	4
Q	400	50	1

The economic order quantity (EOQ) of products P and Q will be in the ratio

- (a) 1:1
- (b) 1:2
- (c) 1:4
- (d) 1:8

29. Misrun is a casting defect which occurs due to

- (a) very high pouring temperature of the metal
- (b) insufficient fluidity of the molten metal
- (c) absorption of gases by the liquid metal
- (d) improper alignment of the mould flasks

30. The percentage of carbon in gray cast iron is in the range of

(a) 0.25 to 0.75 percent

(b) 1.25 to 1.75 percent

(c) 3 to 4 percent

(d) 8 to 10 percent

Q. 31-90 Carry Two Marks Each

31. The following data about the flow of liquid was observed in a continuous chemical process plant

Flow rate	7.5	7.7	7.9	8.1	8.3	8.5
(litres/sec)	to	to	to	to	to	to
	7.7	7.9	8.1	8.3	8.5	8.7
Frequency	1	5	35	17	12	10

Mean flow rate of the liquid is

(a) 8.00 litres/sec

(b) 8.096 litres/sec

(c) 8.16 litres/sec

(d) 8.26 litres/sec

32. From a pack of regular playing cards, two cards are drawn at random. What is the probability that both cards will be Kings, if the first card is NOT replaced?

- (a) $\frac{1}{26}$
- (b) $\frac{1}{52}$
- (c) $\frac{1}{169}$
- (d) $\frac{1}{221}$

- A delayed unit step function is defined as $u(t-a) = \begin{cases} 0 & \text{for } t < a \\ 1 & \text{for } t > a \end{cases}$. Its Laplace 33. transform is

 - (a) $a.e^{-as}$ (b) $\frac{e^{-as}}{s}$ (c) $\frac{e^{as}}{s}$
- 34. The values of a function f(x) are tabulated below

Using Newton's forward difference formula, the cubic polynomial that can be fitted to the above data, is

(a)
$$2x^3 + 7x^2 - 6x + 2$$

(b)
$$2x^2 - 7x^2 + 6x - 2$$

(c)
$$x^3 - 7x^2 - 6x^2 + 1$$

(d)
$$2x^2 - 7x^2 + 6x + 1$$

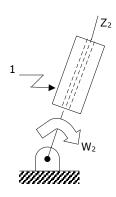
35. The volume of an object expressed in spherical co-ordinates is given by

$$V = \int_0^{2\pi} \int_0^{\frac{\pi}{3}} \int_0^1 r^2 \sin \varnothing dr \varnothing d \varnothing d\theta$$

The value of the integral is

(a)
$$\frac{\pi}{3}$$

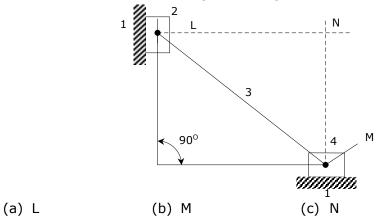
(b)
$$\frac{\pi}{6}$$

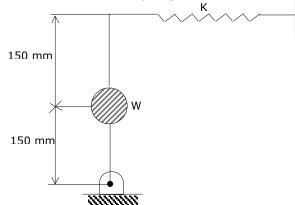

(b)
$$\frac{\pi}{6}$$
 (c) $\frac{2\pi}{3}$ (d) $\frac{\pi}{4}$

(d)
$$\frac{\pi}{4}$$

36. For which value of x will be matrix given below become singular?

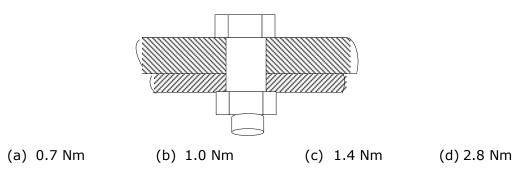
$$\begin{pmatrix}
8 & x & 0 \\
4 & 0 & 2 \\
12 & 6 & 0
\end{pmatrix}$$

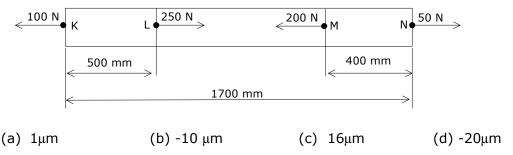

37. In the figure shown, the relative velocity of link 1 with respect to link 2 is 12 m/sec. Link 2 rotates at a constant speed of 120 rpm. The magnitude of Coriolis component of acceleration of link 1 is


- (a) 302 m/s^2
- (b) 604 m/s^2
- (c) 906 m/s^2 (d) 1208 m/s^2

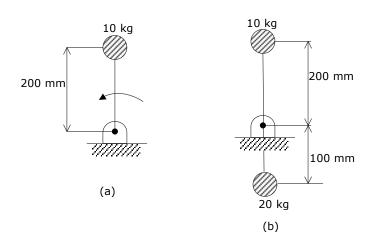
(d) ∞

The figure below shows a planar mechanism with single degree of freedom. 38. The instant center 24 for the given configuration is located at a position

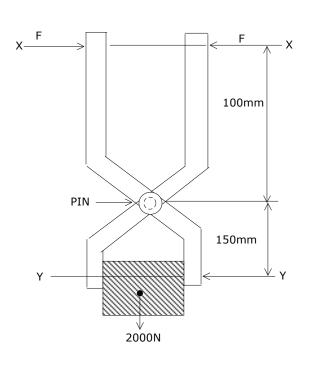

- 39. A uniform stiff rod of length 300 mm and having a weight of 300 N is pivoted at one end and connected to a spring at the other end. For keeping the rod vertical ins a stable position the minimum value of spring constant K needed
 - (a) 300 N/m
 - (b) 400 N/m
 - (c) 500 N/m
 - (d) 1000 N/m


- 40. A mass M, of 20 kg is attached to the free end of a steel cantilever beam of length 1000 mm having a cross-section of 25×25 mm. Assume the mass of the cantilever to be negligible and $E_{steel} = 200 GPa$. If the lateral vibration of this system is critically damped using a viscous damper, the damping constant of the damper is
 - (a) 1250 Ns/m
 - (b) 625 Ns/m
 - (c) 312.50 Ns/m
 - (d) 156.25 Ns/m

41. In a bolted joint two members are connected with an axial tightening force of 2200 N. if the bolt used has metric threads of 4 mm pitch, the torque required for achieving the tightening force is


42. The figure below shows a steel rod of 25 mm² cross sectional area. It is loaded at four points, K, L, M and N. Assume $E_{steel} = 200 GPa$. The total change in length of the rod due to loading is

- 43. An ejector mechanism consists of a helical compression spring having a spring constant of $K = 981 \times 10^3$ N/m. it is pre-compressed by 100 mm from its free state. If it is used to eject a mass of 100 kg held on it, the mass will move up through a distance of
 - (a) 100 mm
 - (b) 500 mm
 - (c) 981 mm
 - (d) 1000 mm
- 44. A rigid body shown in the Fig.(a) has a mass of 10 kg. It rotates with a uniform angular velocity 'ω'. A balancing mass of 20 kg is attached as shown in Fig. (b). The percentage increase in mass moment of inertia as a result of this addition is


- (b) 50%
- (c) 100%
- (d) 200%
- 45. The figure shows a pair of pinjointed gripper tongs holding an object weighing 2000 N. the coefficient of friction (μ) at the gripping surface is 0.1XX is the line of action of the input force and YY is the line of application of gripping force. If the pinjoint is assumed to frictionless, the magnitude of force F required to hold the weight is
 - (a) 1000 N
 - (b) 2000 N
 - (c) 2500 N
 - (d) 5000 N

//////

MASS

SPRING

- 46. A solid circular shaft of 60 mm diameter transmits a torque of 1600 N.m. The value of maximum shear stress develop is
 - (a) 37.72 MPa

(b) 47.72 MPa

(c) 57.72 MPa

- (d) 67.72 MPa
- 47. For a fluid flow through a divergent pipe of length L having inlet and outlet radii and R_1 and R_2 respectively and a constant flow rate of Q, assuming the velocity to be axial and uniform at any cross section, the acceleration at the exit is
 - (a) $\frac{2Q(R_1 R_2)}{\pi L R_2^3}$

(b) $\frac{2Q^2(R_1-R_2)}{\pi L R_2^3}$

(c) $\frac{2Q^2(R_1-R_2)}{\pi^2 L R_2^5}$

- (d) $\frac{2Q^2(R_2 R_1)}{\pi^2 L R_2^5}$
- 48. A closed cylinder having a radius R and height H is filled with oil density ρ . If the cylinder is rotated about its axis at an angular velocity of ω , the thrust at the bottom of the cylinder is
 - (a) $\pi R^2 \rho g H$

(b) $\pi R^2 \frac{\rho \omega^2 R^2}{4}$

(c) $\pi R^2 \left(\rho \omega^2 R^2 + \rho g H \right)$

- (d) $\pi R^2 \left(\frac{\rho \omega^2 R^2}{4} + \rho g H \right)$
- 49. For air flow over a flat plate, velocity (U) and boundary layer thickness (δ) can be expressed respectively, as

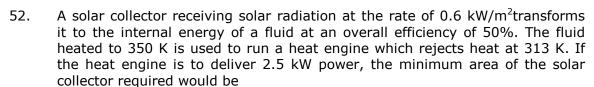
$$\frac{U}{U_{\alpha}} = \frac{3}{2} \frac{y}{\delta} - \frac{1}{2} \left(\frac{y}{\delta} \right)^{3}; \delta = \frac{4.64x}{\sqrt{\text{Re}_{x}}}$$

If the free stream velocity is 2m/s, and air has kinematic viscosity of 1.5×10^{-5} m²/s and density of 1.23 kg/m³, the wall shear stress at x = 1m, is

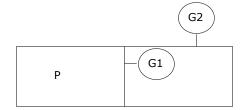
(a) $2.36 \times 10^2 \text{ N/m}^2$

(b) $43.6 \times 10^{-3} \text{ N/m}^2$

(c) $4.36 \times 10^{-3} \text{N/m}^2$


- (d) $2.18 \times 10^{-3} \, \text{N/m}^2$
- 50. A centrifugal pump is required to pump water to an open water tank situated 4 km away from the location of the pump through a pipe of diameter 0.2 m having Darcy's friction factor of 0.01. The average speed of water in the pipe is 2 m/s. if it is maintain a constant head of 5 m in the tank, neglecting other minor losses, the absolute discharge pressure at the pump exit is
 - (a) 0.449 bar

(b) 5.503 bar


(c) 44.911 bar

(d) 55.203 bar

51.	having a co-efficien	ng an efficiency of 70 t of performance of ir by the refrigerator f urce by the engine is	5. The energy abso	orbed from low
	(a) 0.14 kJ	(b) 0.71 kJ	(c) 3.5 kJ	(d) 7.1 kJ

- (a) 8.33 m²
- (b) 16.66 m²
- (c) 39.68 m²
- (d) 79.36 m²
- 53. The pressure gauges G_1 and G_2 installed on the system show pressures of P_{G1} = 5.00 bar and P_{G2} =1.00 bar. The value of unknown pressure P is
 - (a) 1.01 bar
 - (b) 2.01 bar
 - (c) 5.00 bar
 - (d) 7.01 bar

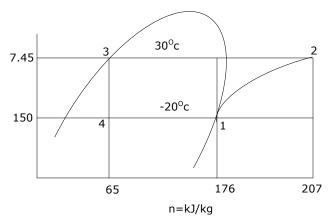
- 54. A steel billet of 2000 kg mass is to be cooled from 1250 K to 450 K. The heat released during this process is to be used as a source of energy. The ambient temperature is 303 K and specific heat of steel is 0.5 kJ/kg K. the available energy of this billet is
 - (a) 1.01 bar
- (b) 2.01 bar
- (c) 5.00 bar
- (d) 7.01 bar
- 55. A stainless steel tub ($k_8 = 19 \text{ W/mK}$) of 2 cm ID and 5 cm OD is insulated with 3 cm thick asbestos ($k_a = 0.2 \text{ W/mK}$). If the temperature difference between the innermost and outermost surfaces is 600°C , the heat transfer rate per unit length is
 - (a) 0.94 W/m

(b) 9.44 W/m

(c) 944.72 W/m

(d) 9447.21 W/m

- 56. A spherical thermocouple junction of diameter 0.706 mm is to be used for the measurement of temperature of a gas stream. The convective heat transfer co-efficient on the bead surface is 400 W/m² K. Thermophysical properties of thermocouple material are k=20 W/mK, C=400 J/kg K and $\rho=8500kg/m³$. If the thermocouple initially at 30°C is placed in a hot stream of 300°C, the time taken by the bead to reach 298°C, is
 - (a) 2.35 s
- (b) 4.9 s
- (c) 14.7 s
- (d) 29.4 s


		pecific heat of water i 2000 W/m ² K, the hea		the overall heat
	(a) 0.707 m ²	(b) 7.07 m ²	(c) 70.7 m ²	(d) 141.4 m ²
58.		on a 4 cylinder engii ken at constant speed.		easurements of
	All cylinders firing		3037 kW	
	Number 1 cylinder no	ot firing	2102 kW	
	Number 2 cylinder no	ot firing	2102 kW	
	Number 3 cylinder no	ot firing	2100 kW	
	Number 4 cylinder no	ot firing	2098 kW	
	The mechanical effici	ency of the engine is		
	(a) 91.53%	(b) 85.07%	(c) 81.07%	(d) 61.22%
59.	cm and stroke length clearance volume is	on air standard Otto con of 15 cm. The ratio of 196.3 cc and the heat coutput per cycle per l	of specific heats for a supplied per kg of	air is 1.4. If the
	(a) 879.1 kJ	(b) 890.2 kJ	(c) 895.3 kJ	(d) 973.5 kJ
60.	and 10.1 m ³ /s respec	ower plant site, availa ctively. If the turbine cond (rps) with an ove is site is	to be installed is red	quired to run at
	(a) Francis		(b) Kaplan	
	(c) Pelton		(d) Propeller	
61.	18°C. The air dry but at 18°C and 30°C are heat of air and water latent heat of vapo humidity (kg/kg of crespectively, are	ure of air at one atroll temperature is 30°C of 0.02062 bar and 0.00 or vapour respectively a prization of water at dry air) and enthalpy	C. The saturation pr 14241 bar respective are 1.005 and 1.88 of 0°C is 2500 kJ/kg (kJ/kg of dry air) c	essure of water ely. The specific kJ/kg K and the g. The specific of this moist air
	(a) 0.01051, 52.64		(b) 0.01291, 63.1	5
	(c) 0.01481, 78.60		(d) 0.01532, 81.4	0

In a condenser, water enters a 30°C and flows at the rate 1500 kg/hr. The condensing steam is at a temperature of 120°C and cooling water leaves the

57.

62. A R-12 refrigerant reciprocating compressor operates between the condensing

temperature of 30°C and evaporator temperature of -20°C. The clearance volume ratio of the compressor is 0.03. Specific heat ratio of the vapour is 1.15 and the specific volume at the suction is $0.1089 \text{ m}^3/\text{kg}$. properties Other various states are given in the figure. To realize 2 Tons of refrigeration, the actual volume

displacement rate considering the effect of clearance is

(a)
$$6.35 \times 10^{-3} \text{ m}^3/\text{s}$$

(c)
$$635 \times 10^{-3} \text{ m}^3/\text{s}$$

(b)
$$63.5 \times 10^{-3} \text{ m}^3/\text{s}$$

(d)
$$4.88 \times 10^{-3} \text{ m}^3/\text{s}$$

- 63. GO and No-GO plug gages are to be designed for a hole 20.000^{+0.050} mm. Gage tolerances can be taken as 10% of the hole tolerance. Following ISO system of gage design, sizes of GO and NO-GO gage will be respectively
 - (a) 20.010 mm and 20.050 mm
- (b) 20.014 mm and 20.046 mm
- (c) 20.006 mm and 20.054 mm
- (d) 20.014 mm and 20.054 mm
- 64. A standard machine tool and an automatic machine tool are being compared for the production of a component. Following data refers to the two machines.

	Standard Machine Tool	Automatic Machine Tool
Setup time	30 min.	2 hours
Machining time per piece	22 min.	5 min
Machine rate	Rs.200 per hour	Rs.800 per hour

The breakeven production batch size above which the automatic machine tool will be economical to use, will be

- (a) 4
- (b) 5

(c) 24

(d) 225

65.	Shear strength of th	es are to be punched e material is 400 N/r ch is 2 mm. The blan	nm² and penetratio	n is 40%. Shear
	(a) 22.6 kN		(b) 37.7 kN	
	(c) 61.6 kN		(d) 94.3 kN	
66.	thickness. Drill spind	mm diameter are to dle speed is 300 rpn ming drill overtravel o	n, feed 0.2 mm/rev	and drill point
	(a) 4 seconds		(b) 25 seconds	
	(c) 100 seconds		(d) 110 seconds	
67.	-	age, clockwise circula 5) will have its center		, specified from
	(a) (10, 10)	(b) (15, 10)	(c) (15, 15)	(d) (10, 15)
68.	-	as $200 \times 100 \times 10$ m for pattern making a casting will be		
	(a) 0.97	(b) 0.99	(c) 1.01	(d) 1.03
69.	In an orthogonal cutt	ing test on mild steel	, the following data	were obtained
	Cutting speed	:	40 m/min	
	Depth of cut	:	0.3 mm	
	Tool rake angle	:	+ 5°	
	Chip thickness	:	1.5 mm	
	Cutting force	:	900 N	
	Thrust force	:	450 N	
	Using Merchant's and	alysis, the Friction ang	le during the machi	ning will be
	(a) 26.6°	(b) 31.5°	(c) 45°	(d) 63.4°
70.		sheet of 25 mm thick 00 mm and it rotates		
	(a) 5 mm	(b) 39 mm	(c) 78 mm	(d) 120 mm

/1.		ration, doubling the c value. The exponei		
	(a) $\frac{1}{8}$	(b) $\frac{1}{4}$	(c) $\frac{1}{3}$	(d) $\frac{1}{2}$
72.	which an employee total time and the pe contract provides a	on was work-sampled soldered 108 joints. A erformance rating was llowance of 20 perce e operation would be	Actual working times estimated to be	ne was 90% of the 120 percent. If the
	(a) 8 min.	(b) 8.9 min	(c) 10 min.	(d) 12 min.
73.	assembly operation	nent manufacturer ha that can produce 80 sts of three activities a	units during a re	
	Ad	ctivity Stan	dard time (min.)	
	M. Mechan	ical assembly	12	
	E. Electric	wiring	16	
	T. Test		3	
	For line balancing that and T would respect	e number of work sta vely be	itions required for	the activities M, E
	(a) 2, 3, 1		(b) 3, 2,1	
	(c) 2, 4, 2		(d) 2, 1, 3	
74.	service time and o Breakdowns occur o	ice facility has Poisson perates on a 'first c n an average of 3 pe ew can service an ave en.	ome first served' r day with a rang	queue discipline. e of zero to eight.

75. A company has an annual demand of 1000 units, ordering cost of Rs.100/order and carrying cost of Rs.100/unit -year. If the stock-out costs are estimated to be nearly Rs.400 each time the company runs out-of-stock,

(c) 1 day

(d) 3 days

The mean waiting time for an item to be serviced would be

(b) $\frac{1}{3}$ day

(a) $\frac{1}{6}$ day

the safety stock justified by the carrying cost will be
(a) 4 (b) 20 (c) 40 (d) 100

76.	A company produces two types of toys: P and Q. Production time of Q is twice that of P and the company has a maximum of 2000 time units per day. The
	supply of raw material is just sufficient to produce 1500 toys (of any type) per
	day. Toy type Q requires an electric switch which is available @ 600 pieces
	per day only. The company makes a profit of Rs.3 and Rs.5 on type P and Q
	respectively. For maximization of profits, the daily production quantities of P and Q toys should respectively be

(a) 100, 500

(b) 500, 100

(c) 800, 600

(d) 1000, 1000

77. Match the following

Type of Mechanism

P. Scott - Russel mechanism

Q. Geneva mechanism

R. Off-set slider-crank mechanism

S. Scotch Yoke mechanism

Motion achieved

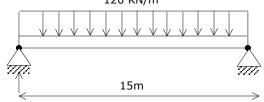
- 1. Intermittent motion
- 2. Quick return motion
- 3. Simple harmonic motion
- 4. Straight line motion
- (a) P-2 Q-3 R-1 S-4
- (b) P-3 Q-2 R-4 S-1
- (c) P-4 Q-1 R-2 S-3
- (d) P-4 Q-3 R-1 S-2

78. Match the following

- P. Bevel gears
- 1. Non-parallel off-set shafts
- Q. Worm gears
- 2. Non-parallel intersecting shafts
- R. Herringbone gears
- 3. Non-parallel, non-intersecting shafts
- S. Hypoid gears
- 4. Parallel shafts
- (a) P-4 Q-2
- R-1 S-3
- (b) P-2 Q-3 R-4

P-1

- (c) P-3
- Q-2
- R-1 S-4
- (d)
- Q-3
- R-4
- S-2


S-1

79.	Matc	h the fo	llowing	with r	espect t	o spati	al mech	anisms			
		Туре	of Joint	<u>.</u>	Degree	of cons	straint				
	P. Re	volute			1. Three	9					
	Q. Cy	/lindrica	al		2. Five						
	R. Sp	herical			3. Four						
					4. Two						
					5. Zero						
	(a)	P-4	Q-3	R-3			(b)	P-5	Q-4	R-3	
	(c)	P-2	Q-3	R-1			(d)	P-4	Q-5	R-3	
80.	Matc	h the fo	llowing								
	P. Red	ciprocat	ing pun	np	1. Pla	nt with	power	output	below	100 kW	
	Q. Ax	ial flow	pump		2. Pla MW	ant wit	h powe	r outpu	ut betw	een 100	kW to
	R. Mic	rohyde	l plant		3. Pos	sitive d	isplacer	nent			
	S. Ba	ckward	curved	vanes		aft tube	-				
					5. Hic	h flow	rate, lo	w press	sure rat	io	
					_		al pump	-			
	(a)	P-3	Q-5	R-6	S-2		pp		.		
	(b)		Q-5								
	(c)		Q-5								
	(d)	P-4	Q-5	R-1	S-6						
81.	Matc	h the fo	llowing	:							
	Fe	eature t	o be in	specte	d		I	nstrum	ent		
	P. Pitch thread	and A	ngle er	rors of	screw	1. Aut	to Collin	nator			
	Q. Flatr	ness err	or of a	surface	plate	2. Op	tical Int	erferon	neter		
	R. Alig		error o	of a m	achine	3. Div	iding H	ead and	d Dial G	Gauge	
	S. Profi	le of a d	cam			4. Spi	rit Leve	el .			
						5. Sin	e bar				
							ol make	r's Micr	oscope		
	(a)	P-6	Q-2	R-4	S-6	(b)	P-5	Q-2	R-1	S-6	
	(c)	P-6	Q-4	R-1	S-3	(d)	P-1	Q-4	R-4	S-2	

82.	M	1atch	the fol	lowing							
			Р	roduct					Proces	S	
	P. N	Molde	d lugga	age			1. Inje	ection n	nolding		
	Q. Packaging containers for liquid					2. Hot	rolling				
	R. Long structural shapes					3. Im	oact ext	rusion			
	S. (Collap	sible t	ubes			4. Tra	nsfer m	olding		
							5. Blo	w mold	ing		
							6. Coi	ning			
	(a)	P-1	Q-4	R-6	S-3	(b)	P-4	Q-5	R-2	S-3
	(c)	P-1	Q-5	R-3	S-2	(d)	P-5	Q-1	R-2	S-2
83.	n	nateri	ials by	/ using	•	process		•			and-to-machine he best set of
			Op	eration	1		Process				
	P. [P. Deburring (internal surface)					1. Plasma Arc Machining				
	Q. Die sinking					2. Abrasive Flow Machining					
	R. Fine hole drilling in thin sheets					3. Electric Discharge Machining					
		S. Tool sharpening					4. Ultrasonic Machining				
	S. 1	1001 S	iiai pei	5						_	
	S. 1	1001 S	nai per	3					n Machi	ning	
	S. 1	1001 S	nai pei	3			5. Las	er bean		_	
		a)	P-1	Q-5	R-3	S-4	5. Las	er bean	n Machi	_	S-2
	(·		R-3 R-2	S-4 S-6	5. Las 6. Ele	er bean	n Machi mical G	rinding	
84.	((F	a) c) From t	P-1 P-5 the list	Q-5 Q-1 s given	R-2 below	S-6 , choos	5. Las 6. Ele (b) (d)	er bean ctroche P-1 P-2	n Machi mical G Q-4 Q-3 propriat	rinding R-1 R-5	S-2
84.	((F	a) c) From toroces	P-1 P-5 the list	Q-5 Q-1 s given	R-2 below	S-6 , choos	5. Las 6. Ele (b) (d) e the mocess cl	er bean ctroche P-1 P-2 nost app	m Machi mical G Q-4 Q-3 propriat stics	rinding R-1 R-5	S-2 S-6
84.	((F p	a) c) From toroces	P-1 P-5 the list ss and	Q-5 Q-1 s given	R-2 below respond	S-6 , choos ding pro	5. Las 6. Ele (b) (d) e the mocess cl	er bean ctroche P-1 P-2 nost app nracteri	m Machi mical G Q-4 Q-3 propriat stics	rinding R-1 R-5 e set of	S-2 S-6
84.	((F P. T	a) c) From to roces Pr Tempe	P-1 P-5 the list ss and	Q-5 Q-1 s given the cor	R-2 below respond	S-6, choos ding prosterite is	5. Las 6. Ele (b) (d) e the mocess cl Ch	er bean ctroche P-1 P-2 nost app nracteri aracteri	m Machi mical G Q-4 Q-3 propriat stics istics	rinding R-1 R-5 e set of	S-2 S-6
84.	() () F, T Q. /	a) c) From toroces Pr Fempe Auste	P-1 P-5 the list s and socess ering	Q-5 Q-1 s given the cor	R-2 below respond 1. Aus 2. Aus	S-6, choos ding prostenite stenite	5. Las 6. Ele (b) (d) e the mocess cl Ch is conve	er bean ctroche P-1 P-2 nost app nracteri aracteri erted in	m Machi mical G Q-4 Q-3 propriat stics istics to baini	rinding R-1 R-5 e set of	S-2 S-6 f heat treatment
84.	() () F, T Q. /	a) c) From toroces Pr Fempe Auste	P-1 P-5 the list s and socess ering mperin	Q-5 Q-1 s given the cor	R-2 below respond 1. Aus 2. Aus 3. Cer	S-6, choos ding prostenite stenite mentite	5. Las 6. Ele (b) (d) e the mocess cl Ch is conve	er bean ctroche P-1 P-2 nost app nracteri aracteri erted in erted in	m Machi mical G Q-4 Q-3 propriat stics istics to baini to mart	rinding R-1 R-5 e set of	S-2 S-6 heat treatment
84.	() () F, T Q. /	a) c) From toroces Pr Fempe Auste	P-1 P-5 the list s and socess ering mperin	Q-5 Q-1 s given the cor	R-2 below respond 1. Aus 2. Aus 3. Cer 4. Bot	S-6, chooseding prostenite istenite in mentite in hardi	5. Las 6. Ele (b) (d) e the mocess cl ch is convenis convenis convenis convenies an	er bean ctroche P-1 P-2 nost app nracteri aracteri erted in erted in d brittle	m Machi mical G Q-4 Q-3 propriat stics istics to baini to mart	rinding R-1 R-5 e set of te ensite oular store reduce	S-2 S-6 heat treatment
84.	(((F p P T Q . A R . N	a) c) From toroces Pr Fempe Auste	P-1 P-5 the list s and socess ering mperin	Q-5 Q-1 s given the cor	R-2 below respond 1. Aus 2. Aus 3. Cer 4. Bot	S-6, chooseding prostenite istenite in mentite in hardi	5. Las 6. Ele (b) (d) e the mocess cl ch is convenis convenis convenis convenies an	er bean ctroche P-1 P-2 nost app nracteri aracteri erted in erted in d brittle	m Machi mical G Q-4 Q-3 propriat stics istics to baini to mart nto glob	rinding R-1 R-5 e set of te ensite oular store reduce	S-2 S-6 heat treatment

Data for Q.85-86 are given below. Solve the problems and choose correct answers.

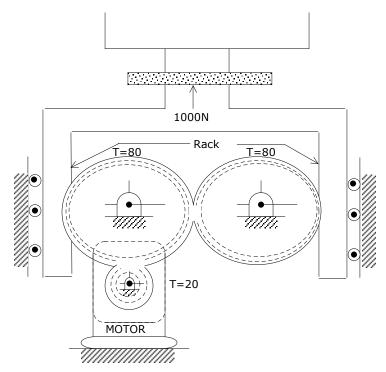
A steel beam of breadth 120 mm and height 750 mm is loaded as shown in the figure. Assume $E_{\rm steel}$ = 200GPa.

- 85. The beam is subjected to a maximum bending moment of
 - (a) 3375 kNm

(b) 4750 kNm

(c) 6750 kNm

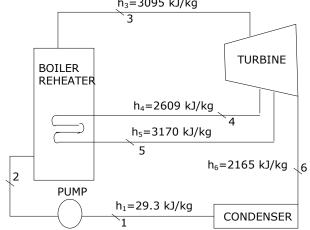
- (d) 8750 kNm
- 86. The value of maximum deflection of the beam is
 - (a) 93.75 mm


(b) 83.75 mm

(c) 73.75 mm

(d) 63.75 mm

Data for Q.87-88 are given below. Solve the problems and choose correct answers.


A compacting machine shown in the figure below is used to create a desired thrust force by using a rack and pinion arrangement. The input gear is mounted on the motor shaft. The gears have involutes teeth of 2 mm module.

- 87. If the drive efficiency is 80%, the torque required on the input shaft to create 1000 N output thrust is
 - (a) 20 Nm
- (b) 25 Nm
- (c) 32 Nm
- (d) 50 Nm
- 88. If the pressure angle of the rack is 20° , the force acting along the line of action between the rack and the gear teeth is
 - (a) 250 N
- (b) 342 N
- (c) 532 N
- (d) 600 N

Data for Q. 89 and 90 are given below. Solve the problem and choose correct answers. $h_3=3095 \text{ kJ/kg}$

Consider a steam power plant using a reheat cycle as shown. Steam leaves the boiler and enters the turbine at 4 MPa, 350° C ($h_3 = 3095$ kJ/kg). After expansion in the turbine to 400 kPa ($h_4 = 2609$ kJ/kg), the steam is reheated to 350° C ($h_5 = 3170$ kJ/kg), and then expanded in a low pressure turbine to 10 kPa ($h_6 = 2165$ kJ/kg). The specific volume of liquid handled by the pump can be assumed to be

- 89. The thermal efficiency of the plant neglecting pump work is
 - (a) 15.8%
- (b) 41.1%
- (c) 48.5%
- (d) 58.6%

- 90. The enthalpy at the pump discharge (h_2) is
 - (a) $0.33 \, kJ/kg$

(b) $3.33 \, kJ/kg$

(c) 4.0 kJ/kg

(d) $33.3 \, kJ/kg$