MCA (Revised)
 Term-End Examination
 June, 2008

MCS-013 : DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50

Note : Question number I is compulsory. Attempt any three questions from the rest.

1. (a) The chairs of an auditorium are to be labelled with a letter from the English alphabet $\{\mathrm{A}, \mathrm{B}, \ldots, \mathrm{Z}\}$ and a positive integer not exceeding 100 . What is the largest number of chairs that can be labelled differently?
(b) If $\mathrm{R}=\{(1,1),(2,1),(3,2),(4,3))$, find $\mathrm{R}^{2}, \mathrm{R}^{4}$.
(c) How many bit strings of length 10 contain at least four 1's?3
(d) Show that $7(q \rightarrow r) \wedge r \wedge(p \rightarrow q)$ is a contradiction. 3
(e) Draw the logic circuit for the boolean function

$$
Y=A B^{\prime}+(A+B)^{\prime}+\left(A^{\prime} B\right)^{\prime}
$$

(f) Write down all the partitions of 6. Also find P_{6}^{3} and P_{6}^{4}.
(g) Let $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ denote " $\mathrm{x}+\dot{y}=0$ ". What are the truth values of the quantification $\exists y \forall x Q(x, y)$?
2. (a) Find the number of integers between 1 and 250 both inclusive that are not divisible by any of the integers 2, 3, 5 and 7.
(b) From a club consisting of 6 men and 7 women, in how many ways can we select a committee of 4 persons that has at most one man ?
3. (a) Show that $p \vee(q \wedge r)$ and $(p \vee q) \wedge(p \vee r)$ are logically equivalent.
(b) Prove, by mathematical induction, that

$$
\begin{equation*}
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1} \tag{4}
\end{equation*}
$$

(c) How many permutations are there of the letters, taken all at a time, of the word ALLAHABAD ?
4. (a) Let $A=\{0,1,2,3 \ldots\}$ and $R=\{(x, y): x-y=3 k$, k is an integer) i.e., $x R y$ iff $x-y$ is divisible by 3 , then prove that R is an equivalence relation.
(b) A car manufacturer has 5 service centres in a city. 10 identical cars were served in these centres for a particular mechanical defect. In how many ways could the cars have been distributed at various centres?
(c) Write the CNF of the function

$$
\left(x y^{\prime}+x z\right)^{\prime}+x^{\prime}
$$

5. (a) Prove that $\sqrt{7}$ is irrational.
(b) Check whether the following argument is valid :

$$
\begin{equation*}
((p \rightarrow q) \wedge(q \rightarrow r)) \Rightarrow(p \rightarrow r) \tag{3}
\end{equation*}
$$

(c) Suppose A and B are mutually exclusive events such that $P(A)=0.3$ and $P(B)=0.4$. What is the probability that
(i) A does not occur ?
(ii) A or B occurs ?
-

$!$

