MCA (Revised)

Term-End Examination

December, 2007

MCS-013 : DISCRETE MATHEMATICS

Time : 2 hours

Maximum Marks : 50

Note : Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Find the boolean expression for the following circuit. 4

(b) Prove by induction
$1+2+2^{2}+2^{3}+\ldots+2^{n}=2^{n+1}-1$
(c) For the sets $A=\{a, b, c, d, e\}, B=\{a, b, e, g, h\}$ and $C=\{b, d, e, g, h, k, m, n\}$ prove $|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-$ $|B \cap C|-|A \cap C|+|A \cap B \cap C|$ $|\mathrm{X}|$ denotes the number of elements in X .
(d) By using truth table show that $(\sim q \wedge(p \rightarrow q)) \rightarrow \sim p$ is a tautology.
(e) In how many ways can a committee of 3 faculty members and 2 students be formed from a group of 7 faculty members and 8 students ?
(f) Let $A=\{1,2,3,4,8\}=B$. R is a relation from A to B. $a R b$ iff a divides b. What are the elements of R ?
2. (a) Let $\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{R}$ (set of real numbers).

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be defined by $f(a)=a-1$ and $g(b)=b^{2}$. Find
(i) $(f \circ g)(2)$
(ii) $(\mathrm{g} \circ \mathrm{f})(\mathrm{x})$
(b) Define an equivalence relation. Show that divisibility in the set of real numbers is not an equivalence relation.
(c) In how many ways can 6 men and 6 women be seated in a row if men and women must occupy alternate seats ?
3. (a) Prove by contrapositive. "Let n be an integer. If n is odd then n^{2} is odd."
(b) Show that the statements
$\left(p \wedge q \wedge r^{\prime}\right) \vee\left(p \wedge q^{\prime} \wedge r^{\prime}\right)$ and $p \wedge r^{\prime}$ are logically equivalent.
(c) Draw the logic diagram of $(p \wedge q) \vee\left(q \wedge r^{\prime}\right)$
4. (a) Write the DNF and CNF for the boolean function $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

(b) Simplify the following boolean expression.

$$
\begin{aligned}
& \left(a^{\prime} \wedge b \wedge c\right) \vee\left(a^{\prime} \wedge b^{\prime} \wedge c\right) \vee\left(a \wedge b \wedge c^{\prime}\right) \vee \\
& \left(a^{\prime} \wedge b^{\prime} \wedge c^{\prime}\right) \vee\left(a \vee b^{\prime} \vee c^{\prime}\right)
\end{aligned}
$$

(c) Using truth table show that $\mathrm{p} \rightarrow \mathrm{q} \equiv \mathrm{p}^{\prime} \vee \mathrm{q}$.
5. (a) Using Pigeonhole principle show "If any 14 numbers from 1 to 25 are chosen, then one of them is a multiple of the other."
(b) A basket contains 3 apples, 5 bananas, 4 oranges and 6 pears. A piece of fruit is chosen at random from the basket. Compute the probability that
(i) an apple or pear is chosen.
(ii) the fruit chosen is not an orange.
(c) Let $\mathrm{R}=\{(1,1),(1,3),(1,4)\}$ be a relation on $\mathrm{A}=\{1,2,3,4\}$. It is not reflexive. Why ?

