EAMCET

ENGINEERING ENTRANCE EXAM SOLVED PAPER-2005

PHYSICS

Names of units of some physical quantities are given in List-I and their dimensions formulae are given in List-II. Match the correct pairs in the lists :

List-I

List-II

A. Pa-s (i) $[L^2T^{-2}K^{-1}]$ B. Nm-K⁻¹ (ii) MLT ⁻³K⁻¹] C. J kg⁻¹ K⁻¹ (iii) $[ML^{-1}T^{-1}]$ D. Wm⁻¹ K⁻¹ (iv) $[ML^2T^{-2}K^{-1}]$

(a) (iv) (iii) (i) (ii) (b) (iii) (ii) (iv) (i)

(c) (iii) (i) (iv) (ii) (d) (iii) (iv) (i) (ii)

At a given instant of time the position vector of a particle moving in a circle with a velocity $3\hat{1} - 4\hat{1} + 5\hat{k}$ is $\hat{1} + 9\hat{1} - 3\hat{k}$. Its angular velocity at that time is:

(a)
$$\frac{(13\hat{i} + 29\hat{j} - 31\hat{k})}{\sqrt{146}}$$

(b)
$$\frac{(13\hat{\mathbf{1}} - 29\hat{\mathbf{j}} - 31\hat{\mathbf{k}})}{146}$$

(c)
$$\frac{(13\hat{\mathbf{1}} + 29\hat{\mathbf{j}} - 31\hat{\mathbf{k}})}{\sqrt{146}}$$

(d)
$$\frac{(13\hat{i} + 29\hat{j} + 31\hat{k})}{146}$$

A body projected vertically upwards crosses a point twice in its journey at a height h just after t_1 and t_2 seconds. Maximum height reached by the body is :

(a) $\frac{g}{4}(t_1 + t_2)^2$ (b) $g\left(\frac{t_1 + t_2}{4}\right)^2$ (c) $2g\left(\frac{t_1 + t_2}{4}\right)^2$ (d) $\frac{g}{4}(t_1 t_2)$

The equation of trajectory of a projectile is $y = 10 \ x - \left(\frac{5}{9}\right) x^2$

If we assume $g = 10 \text{ ms}^{-2}$, the range of projectile (in metre) is:

(a) 36

(b) 24

(c) 18

(d) 9

The machine gun fires 240 bullets per minute. If the mass of each bullet is 10 g and the velocity of the bullets is 600 ms⁻¹, the power (in kW) of the gun is:

(a) 43200

(b) 432

(c) 72 (d) 7.2

The centre of mass of three particles of masses 1 kg, 2 kg and 3 kg is at (2, 2, 2). The position of the fourth mass of 4 kg to be placed in the system as that the new centre of mass is at (0, 0, 0) is:

(a) (-3, -3, -3)

(b) (-3, 3, -3)

(c) (2, 3, -3)

(d) (2, -2, 3)

Consider the following statements A and B and identify the correct answer:

(A): In an elastic collision, if a body suffers a head on collision with another of same mass at rest, the first body comes to rest while the other starts moving with the velocity of the first one.

(B): Two bodies of equal mass suffering a head on elastic collision merely exchanges their velcities:

(a) both A and B are true

(b) both A and B are false

(c) A is true but B is false

(d) A is false but B is true

(a) 60° (b) 45° (c) 30°

The instantaneous velocity of a point B of the given rod of length 0.5 m is 3 m/s in the represented direction. The angular velocity of the rod for minimum velocity of end A is:

(a) 1.5 rad/s

(b) 5.2 rad/s

(c) 2.5 rad/s

(d) none of these

- 10. Identify the increasing order of the angular velocities of the following:
 - 1. earth rotating about its own axis
 - hour's hand of a clock
 - second's hand of a clock
 - flywheel of radius 2 m making 300 rpm
 - (a) 1, 2, 3, 4
- (b) 2, 3, 4, 1
- (c) 3, 4, 1, 2
- (d) 4, 1, 2, 3

(c) 1

- Degenerate electron pressure will not be 11. sufficient to prevent core collapse of 'white dwarf' if its mass becomes n times of solar mass. Value of n is:
 - (a) 0.5
- (b) 0.8
- (d) 1.4
- A body of mass m is suspended to an ideal 12. spring of force constant k. The expected change in the position of the body due to an additional force F acting vertically downwards is:
- (a) $\frac{3F}{2k}$ (b) $\frac{2F}{k}$ (c) $\frac{5F}{2k}$ (d) $\frac{4F}{k}$
- The radii and Young's moduli of two 13. uniform wires A and B are in the ratio 2 : 1 and 1 : 2 respectively. Both wires are subjected to the same longitudinal force. If the increase in length of the wire A is one percent, the percentage increase in length of the wire B is:
 - (a) 1.0
- (b) 1.5
- (c) 2.0
- (d) 3.0

- The heat evolved for the rise of water when 14. one end of the capillary tube of radius r is immersed vertically into water is: (Assume surface tension = T and density of water to be p)
- (b) $\frac{\pi T^2}{\rho g}$
- (d) none of these
- An iron sphere of mass 20×10^{-3} kg falls 15. through a viscous liquid with terminal velocity 0.5 ms⁻¹. The terminal velocity (in ms⁻¹) of another iron sphere of mass 54×10^{-2} kg is:
 - (a) 4.5 (b) 3.5
- (d) 1.5
- 16. The relation between the coefficient of real expansion (γ_r) and coefficient of apparent expansion (γ_a) of a liquid and the coefficient of linear expansion (α_g) of the material of the container is:
 - (a) $\gamma_r = \alpha_g + \gamma_a$ (b) $\gamma_r = \alpha_g + 3\gamma_a$

 - (c) $\gamma_r = 3\alpha_g + \gamma_a$ (d) $\gamma_r = 3(\alpha_g + \gamma_a)$
 - 17.The difference between volume and pressure coefficients of an ideal gas is :
 - (a) $\frac{1}{273}$ (b) 273 (c) $\frac{2}{273}$
- (d) zero
- 18.The ratio of specific heats of a gas is γ. The change in internal energy of one mole of the gas, when the volume changes from V to 2V at constant pressure P is :
- (a) $\frac{\gamma-1}{PV}$
- (c) $\frac{PV}{\gamma 1}$ (d) $\frac{PV}{\gamma}$
- The tyre of a motor car contains air at 19. 15°C. If the temperature increases to 35°C, the approximate percentage increase in pressure is (ignore to expansion of tyre) : (c) 11 (a) 7
- Two identical bodies have temperatures 20. 277°C and 67°C. If the surroundings temperature is 27°C, the ratio of loss of heats of the two bodies during the same interval of time is (approximately):
 - (a) 4:1
- (b) 8:1
- (c) 12 : 1
- (d) 19:1

A vehicle sounding a whistle of frequency 21. 256 Hz is moving on a straight road, towards a hill with a velocity of 10 ms⁻¹. The number of beats per second observed by a person travelling in the vehicle is : (Velocity of sound = 330 ms⁻¹)

(a) zero (b) 10 (c) 14 (d) 16

A transverse wave propagating on a 22. stretched string of linear density 3×10^{-4} kg-m⁻¹ is represented by the equation $y = 0.2 \sin (15x + 60t)$

> where x is in metres and t is in seconds. The tension in the string (in newton) is: (a) 0.24 (b) 0.48 (c) 1.20 (d) 1.80

23. Assertion (A): Propagation of light through an optical fibre is due to total internal reflection taking place at the core-clad interface.

Reason (R): Refractive index of the material of the core of the optical fibre is greater than that of air.

- (a) both (A) and (R) are true and (R) is the correct explanation of (A)
- (b) both (A) and (R) are true but (R) is not the correct explanation of (A)
- (c) (A) is true but (R) is false
- (d) (A) is false but (R) is true
- 24. The focal length of an equi-convex lens is greater than the radius of curvature of any of the surfaces. Then the refractive index of the material of the lens is:
 - (a) greater than zero but less than 1.5
 - (b) greater than 1.5 but less than 2.0
 - (c) greater than 2.0 but less than 2.5
 - (d) greater than 2.5 but less than 2.0
- 25. Fraunhofer lines are produced by the absorption of light in :
 - (a) the chromosphere of the sun
 - (b) the photosphere of the sun
 - (c) sodium (d) hydrogen
- 26. A light ray of wavelength λ is passing through a pin hole of diameter D and the effect is observed on a screen placed at a distance L from the pin hole. The approximations of geometrical optics are applicable if:

- (a) $D \le \lambda$ (b) $\frac{L\lambda}{D^2} = 1$ (c) $\frac{L\lambda}{D^2} << 1$ (d) $\frac{L\lambda}{D^2} >> 1$

27. With a standard rectangular bar magnet of length (1), breadth (b; b < < 1) and magnetic moment M, the time period of the magnet in a vibration magnetometer is 4 s. If the magnet is cut normal to its length into four equal pieces, the time period (in seconds) with one of the pieces is:

(a) 16

- (b) 2
- (c) 1
- (d) 1/4
- 28. If two identical bar magnets, each of length l, pole strength m and magnetic moment M are placed perpendicular to each other with their unlike poles in contact, the magnetic moment of the combination is:

(b) $lm(\sqrt{2})$

(c) $2 lm (\sqrt{2})$

- (d) 2M
- 29. A 4 µF capacitor is charged by a 200 V battery. It is then disconnected from the supply and is connected to another uncharged 2 µF capacitor. During the process, loss of energy (in J) is :

(a) 3.43×10^{-2}

(b) 2.67×10^{-2}

(c) 2.67×10^{-4}

- (d) 3.43×10^{-4}
- 30. Two charges 2 C and 6 C are separated by a finite distance. If a charge of -4 C is added to each of them, the initial force of 12×10^3 N will change to:
 - (a) 4×10^3 N (repulsion)
 - (b) 4×10^2 N (repulsion)
 - (c) 6×10^3 N (attraction)
 - (d) 4×10^3 N (attraction)
- 31. A 6 V cell with 0.5Ω internal resistance, a 10 V cell with 1 Ω internal resistance and a 12 Ω external resistance are connected in parallel. The current (in ampere) through the 10 V cell is:

(a) 0.60

(b) 2.27

(c) 2.87

- (d) 5.14
- 32. In a meter bridge a 30 Ω resistance is connected in the left gap and a pair of resistances P and Q in the right gap. Measured from the left, the balance point is 37.5 cm, when P and Q are in series and 71.4 cm when they the parallel. The values of P and Q (in Ω) are :
 - (a) 40 10
- (b) 35 15
- (c) 30 20
- (d) 25 25

33. Consider the following statements *A* and *B* and identify the correct answers given below:

A: Peltier coefficient is numerically equal to the potential difference across the junctions of the thermocouple through which current is flowing.

B: According to Thomson, energy is neither absorbed nor evolved at the junction of a thermocouple but is observed or evolved only along the lengths of both the conductors.

- (a) both A and B are true
- (b) both A and B are false
- (c) A is true but B is false
- (d) A is false but B is true
- 34. An inductance 1 H is connected in series with an AC source of 220 V and 50 Hz. The inductive reactance (in ohm) is:

(a) 2π (b) 50π (c) 100π (d) 1000π

35. Two parallel rails of a railway track insulated from each other and with the ground are connected to a millivoltmeter. The distance between the rails is one metre. A train is travelling with a velocity of 72 km/h along the track. The reading of the millivoltmeter (in mV) is: (Vertical component of the earth's magnetic induction is 2×10^{-5} T)

(a) 1.44 (b) 0.72 (c) 0.4 (d) 0.2

36. Magnetic field induction at the centre of a circular coil of radius 5 cm and carrying a current 0.9 A is (in SI units)

(ε_0 = absolute permittivity of air in SI units; velocity of light = 3×10^8 ms⁻¹)

(a) $\frac{1}{\epsilon_0 \ 10^{16}}$ (b) $\frac{10^{16}}{\epsilon_0}$ (c) $\frac{\epsilon_0}{10^{16}}$ (d) $10^{16}\epsilon_0$

37. According to Moseley's law, the frequency (v) of the K_{α} line and the atomic number Z of the element have the relation (A and B are constants):

(a) $\frac{v}{(Z-A)} = B$ (b) $\frac{\sqrt{v}}{(Z-A)} = B$

(c) v(Z - A) = B (d) $v(Z - A)^2 = B$

38. A particle of mass 1×10^{-26} kg and charge 1.6×10^{-19} C travelling with a velocity 1.28×10^6 ms⁻¹ along the positive X-axis enters a region in which a uniform electric field \vec{E} and a uniform magnetic field of induction \vec{B} are present. If $\vec{E} = -102.4 \times 10^3$ k NC⁻¹ and $B = 8 \times 10^{-2}$ h Wbm⁻², the direction of motion of the particles is:

(a) along the positive X-axis

- (b) along the negative X-axis
- (c) at 45° to the positive X-axis
- (d) at 135° to the positive X-axis

39. Particles and their anti-particles have :

- (a) the same masses but opposite spins
- (b) the same masses but opposite magnetic moments
- (c) the same masses and same magnetic moments
- (d) opposite spins and some magnetic moments
- **40.** An *n-p-n* transistor power amplifier in *C-E* configuration gives :
 - (a) voltage amplification only
 - (b) currents amplification only
 - (c) both current and voltage amplifications
 - (d) only power gain of unity

CHEMISTRY

- In Fischer-Ringe's method of separation of nobles gas mixture from air, is used
 - (a) 90% CaC₂ + 10% CaCl₂
 - (b) coconut charcoal
 - (c) soda lime + potash solution
 - (d) 90% CaCO₃ + 10% urea

- 2. A complex compound of Co³⁺ with molecular formula CoCl_x yNH₃ gives a total of 3 ions when dissolved in water. How many Cl⁻ ions satisfy both primary and secondary valencies in this complex?
 - (a) 3
- (b) 1
- (c) 4
- (d) zero

- The chemicals and the reaction conditions required for the preparation of ethane are: (a) C_2H_5I , Zn-Cu, C_2H_5OH

 - (b) CH₃Cl, Na, H₂O
 - (c) KOOC-CH = CH COOK, electrolysis
 - (d) CH₃CO₂Na, NaOH, CaO, ∆
- Observe the following statements regarding purification of bauxite: I. During Hall's process, silica is removed
 - as Si (vapour). II. Bauxite ore contaminated with Fe₂O₃ is purified in Baeyer's process.
 - III. During Serpeck's process, AlN is formed.

The correct answer is.

- (a) I, II and III are correct
- (b) Only I and II are correct
- (c) Only I and III are correct (d) Only II and III are correct
- Sodium is heated in air at 300°C to form X.X absorbs CO₂ and forms Na₂CO₃ and Y.
 - Which of the following is Y? (b) O_2 (c) H_2O_2 (d) O_3
- (a) H₂ Identify A and B in the following reactions: 6.
 - $A \xrightarrow{\Delta} C_2H_5OH \xleftarrow{AgOH} B$ (a) $A = C_2H_2$, $B = C_2H_6$
 - (b) $A = C_2H_5Cl$, $B = C_2H_4$
 - (c) $A = C_2H_4$, $B = C_2H_5Cl$
 - (d) $A = C_2H_5Cl$, $B = C_2H_5Cl$
- 7. Which one of the following reactions does not form gaseous product?
 - (a) $PbO_2 + H_2O_2 \rightarrow$
 - (b) Acidified KMnO₄ + H₂O₂ →
 - (c) PbS + $H_2O_2 \rightarrow$ (d) Cl₂ + H₂O₂ \rightarrow
- Which of the following is an example for heterogeneous catalysis reaction?
 - (a) $2SO_2(g) + O_2(g) \xrightarrow{NO(g)} 2SO_3(g)$
 - (b) Hydrolysis of aqueous sucrose solution in the presence of aqueous mineral acid
 - (c) $2H_2O_2(l) \xrightarrow{Pt(s)} 2H_2O(l) + O_2(g)$
 - (d) Hydrolysis of liquid in the presence of aqueous mineral acid

- In which of the following reactions the product is an ether?
 - (a) C₆H₆ + CH₃COCl/anhydrous AlCl₃
 - (b) $C_2H_5Cl + aq$. KOH
 - (c) C₆H₆ + C₆H₅COCl/anhydrous AlCl₃
 - (d) $C_2H_5Cl + C_2H_5ONa$
- The atomic numbers of elements X, Y and 10. Z are 19, 21 and 25 respectively. The number of electrons present in the M shell of these elements follow the order:
 - (a) Z > X > Y
- (b) X > Y > Z
- (c) Z > Y > X
- (d) Y > Z > X
- Which of the following, compounds is the 11. reactant in Rosenmund's reduction?
 - (a) CH₃CO₂H
- (b) CH₃CHO
- (d) CH₃COCl (c) CH₃CH₂Cl
- An electron is moving in Bohr's fourth orbit. Its de-Broglie wave length is λ. What is the circumference of the fourth orbit?

12.

- (b) 2λ (c) 4λ
- The half-lives of two radioactive nuclides 13. A and B are 1 and 2 min respectively. Equal weights of A and B are taken separately and allowed to disintegrate for 4 min. What will be the ratio of weights of A and B
 - disintegrated? (a) 1:1
- (b) 5:4

- (c) 1:2 (d) 1:3 3-hydroxybutanal is formed when (X) 14.
 - reacts with (Y) in dilute (Z) solution. What are X, Y and Z? Y
 - CH3CHO, (CH3)2CO, NaOH CH₃CHO, CH₃CHO, NaCl

 - (CH₃)₂CO, (CH₃)₂CO, HCl (c) CH2CHO, CH3CHO, NaOH
- Identify the correct order in which the 15. covalent radius of the following elements
 - increases: (I) Ti (II) Ca
 - (III) Sc (b) (III), (II), (I) (a) (I), (II), (III)
 - (d) (I), (III), (II) (c) (II), (I), (III)
- 16. Which of the following is a linear molecule?
 - (a) BeCl₂
- (b) H₂O
- (c) SO₂
- (d) CH₄

- 17. 'Natalite' is used as :
 - (a) anaesthetic (b) substitute for petrol
 - (c) insecticide
- (d) preservative
- 18. Which of the following is correct?
 - (a) The number of electrons present in the valence shell of S in SF₆ is 12
 - (b) The rates of ionic reactions are very slow
 - (c) According to VSEPR theory, SnCl₂ is a linear molecule
 - (d) The correct order of ability to form ionic compounds among Na⁺, Mg²⁺ and Al³⁺ is Al³⁺ > Mg²⁺ > Na⁺
- 19. *x* grams of calcium carbonate was completely burnt in air. The weight of the solid residue formed is 28 g. What is the value of *x* (in grams)?
 - (a) 44
- (b) 200
- (c) 150
- (d) 50

20. In the reaction.

$$C_2H_5OH \xrightarrow{Cu} X$$
(Vapour) 300°C

The molecular formula of X is:

- (a) C₄H₆O
- (b) C₄H₁₀O
- (c) C₂H₄O
- $(d) C_2H_6$
- 21. A and B are ideal gases. The molecular weights of A and B are in the ratio of 1:4. The pressure of a gas mixture containing equal weights of A and B is P atm. What is the partial pressure (in atm) of B in the mixture?
 - (a) $\frac{P}{5}$
- (b) $\frac{P}{2}$
- (c) $\frac{P}{2E}$
- (d) $\frac{3P}{4}$
- 22. The vapour pressure of water at 23°C is 19.8 mm. 0.1 mole of glucose is dissolved in 178.2 g of water. What is the vapour pressure (in mm) of the resultant solution? (a) 19.0 (b) 19.602 (c) 19.402 (d) 19.202
- 23. Which of the following is not correct?
 - (a) Chlorophyll is responsible for the synthesis of carbohydrates in plants
 - (b) The compound formed in the addition of oxygen to haemoglobin is called oxyhaemoglobin
 - (c) Acetyl salicylic acid is known as aspirin
 - (d) The metal ion present in vitamin \vec{B}_{12} is Mg^{2+}

- 24. Assertion (A): The pH of a buffer solution containing equal moles of acetic acid and sodium acetate is 4.8 (pK_a of acetic acid is 4.8).
 - **Reason (R)**: The ionic product of water at 25° C is 10^{-14} mol². L⁻². The correct answer is:
 - (a) Both (A) and (R) are true and (R) is the correct explanation of (A)
 - (b) Both (A) and (R) are true and (R) is not the correct explanation of A
 - (c) (A) is true but (R) is not true
 - (d) (A) is not true but (R) is true
- 25. What is the quantity of electricity (in Coulombs) required to deposit all the silver from 250 mL of 1 M AgNO₃ solution?
 - (a) 2412.5
- (b) 24125
- (c) 4825.0
 - .0 (d) 48250
- 26. Which of the following is not an air pollutant?
 - (a) N₂
- (b) N_2O
- (c) NO
- (d) CO
- 27. Which of the following is not correct?
 - (a) Aqueous solution of NaCl is an electrolyte .
 - (b) The units of electrochemical equivalent are g- Coulomb
 - (c) In the Nernst equation, n represents the number of electrons transferred in the electrode reaction
 - (d) Standard reduction potential of hydrogen electrode is zero volt
- 28. Observe the following reaction:

$$2A + B \longrightarrow C$$

The rate of formation of C is $2.2 \times 10^{-3} \text{ mol L}^{-1} \text{ min}^{-1}$. What is the value of $-\frac{d[A]}{dt}$ (in mol L⁻¹min⁻¹)?

- (a) 2.2×10^{-3}
- (b) 1.1×10^{-3}
- (c) 4.4×10^{-3}
- (d) 5.5×10^{-3}
- 29. Which of the following compounds is soluble in benzene but almost insoluble in water?
 - (a) C₂H₅OH
- (b) CH₃CO₂H
- (c) CH₃CHO
- (d) $C_6H_5NO_2$

30. At 550 K, the K_c for the following reaction is $10^4 \text{ mol}^{-1} \text{ L}$

$$X(g) + Y(g) \rightleftharpoons Z(g)$$

At equilibrium, it was observed that:

$$[X] = \frac{1}{2}[Y] = \frac{1}{2}[Z].$$

What is the value of [Z] (in mol L^{-1}) at equilibrium?

- (a) 2×10^{-4}
- (b) 10⁻⁴
- (c) 2×10^4
- (d) 10^4
- 31. Which of the following is not correct?
 - (a) Dissolution of NH₄Cl in excess of water is an endothermic process
 - (b) Neutralisation process is always exothermic
 - (c) The absolute value of enthalpy (*H*) can be determined experimentally
 - (d) The heat of reaction at constant volume is denoted by ΔE
- 32. Which of the following is a pair of functional isomers?
 - (a) CH₃COCH₃, CH₃CHO
 - (b) C2H5CO2H, CH3CO2CH3
 - (c) $C_2H_5CO_2H$, $CHCO_2C_2H_5$
 - (d) CH₃CO₂H, CH₃CHO
- **33.** The pH of a solution of H₂O₂ is 6.0. Some chlorine gas is bubbled into this solution. Which of the following is correct?
 - (a) The pH of resultant solution becomes
 - (b) Hydrogen gas is liberated from resultant solution
 - (c) The pH of resultant solution becomes less than 6.0 and oxygen gas is liberated
 - (d) Cl₂O is formed in the resultant solution
- **34.** In which of the following reactions, MgO is not formed?
 - (a) Mg + $CO_2 \longrightarrow$
 - (b) Mg + dil. HNO₃ \longrightarrow
 - (c) Mg + NO $\stackrel{\Delta}{\longrightarrow}$
 - (d) $Mg + B_2O_3 \longrightarrow$
- **35.** The compound prepared by a substitution reaction of benzene is :
 - (a) acetophenone

- (b) glyoxal
- (c) cyclohexane
- (d) hexabromo cyclohexane
- 36. Which of the following is not correct?
 - (a) SiO2 is used as acid flux
 - (b) The distance between the layers in graphite is 3.35×10^{-3} cm
 - (c) SiO₂ reacts with Na₂CO₃ and liberates CO.
 - (d) The hybridisation of C in graphite is sp^2
- 37. Which of the following is not correct?
 - (a) Ammonia is used as refrigerant
 - (b) A mixture of Ca(CN)₂ and C is known as nitrolim
 - (c) A mixture of Ca(H₂PO₄)₂ and CaSO₄. 2H₂O is known as superphosphate of lime
 - (d) Hydrolysis of NCl₃ gives NH₃ and HOCl
- 38. Match the following lists:

List-II List-II

- (A) Benzene 1. Phosgene
- (B) Ethylene 2. Silver mirror
- (C) Acetaldehyde 3. Mustard gas
- (D) Chloroform 4. $(4n + 2)\pi$ electrons
 - 5. Carbylamine

The correct answer is

A B C D A B C D

- (a) 4 3 2 1 (b) 3 2 1 4
- (c) 2 4 5 3 (d) 5 1 4 3
- 39. Which of the following is not correct?
 - (a) Iodine oxidises sodium thiosulphate to sodium tetrathionate
 - (b) Sodium thiousulphate is soluble in water
 - (c) Ozone is used to identify the presence of unsaturation in alkenes
 - (d) Sodium thiosulphate reacts with iodine to form sodium sulphate
- 40. Which one of the following pairs of reactants does not form oxygen when they react with each other?
 - (a) F₂, NaOH solution (hot, conc.)
 - (b) F_2 , H_2O
 - (c) Cl₂, NaOH solution (cold, dilute)
 - (d) CaOCl₂, H₂SO₄ (dilute, small amount)

MATHEMATICS

1.	$\{x \in$	R:	[x -	x	1 = 51	is equa	l to :
	1		r.,		1 – 2)	13 Cqua	

- (a) R, the set of all real numbers
- (b) \$\phi\$, the empty set
- (c) $\{x \in R : x < 0\}$
- (d) $\{x \in R : x \ge 0\}$
- The function $f: C \rightarrow C$ defined by

$$f(x) = \frac{ax + b}{cx + d}$$

for $x \in C$ where $bd \neq 0$ reduces to a constant function, if:

- (a) a = c
- (b) b = d
- (c) ad = bc
- (d) ab = cd

If N denotes the set of all positive integers and if $f: N \to N$ is defined by f(n) =the sum of positive divisors of n then, $f(2^k, 3)$, where k is a positive integers, is:

- (a) $2^{k+1}-1$
- (b) $2(2^{k+1}-1)$
- (c) $3(2^{k+1}-1)$ (d) $4(2^{k+1}-1)$

4.
$$x = \frac{1}{2} \left(\sqrt{3} + \frac{1}{\sqrt{3}} \right) \text{ then } \frac{\sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}}$$
 is equal

- (a) 1
- (b) 2 (c) 3 (d) $\frac{1}{3}$

If $a, b, c \neq 0$ and belong to the set $\{0, 1, 2, 3\}$, 9}, then

$$\log_{10}\left(\frac{a+10b+10^2c}{10^{-4}a+10^{-3}b+10^{-2}c}\right)$$
 is equal to :

- (d) 4
- 6. $\{n(n+1)(2n+1): n \in Z\} \subset$
 - (a) $\{6k : k \in Z\}$
- (b) $\{12k : k \in Z\}$
- (c) $\{18k : k \in Z\}$
- (d) $\{24k : k \in Z\}$

A three digit number n is such that the last two digits of it are equal and differ from the first. The number of such n's is :

- (a) 64
- (b) 72

If $(1+x)^{15} = a_0 + a_1x + ... + a_{15}x^{15}$, then $\sum_{r=1}^{\infty} r \frac{a_r}{a_{r-1}}$ is equal to:

- (a) 110
- (b) 115
- (c) 120
- (d) 135

The coefficient of $x^3y^4z^5$ in the expansion of $(xy + yz + xz)^6$ is:

- (a) 70
- (b) 60
- (c) 50
- (d) none of these

If $|x| < \frac{1}{2}$, then the coefficient of x^r in the 10. expansion of $\frac{1+2x}{(1-2x)^2}$, is:

- (a) $r 2^r$ (b) $(2r-1) 2^r$ (c) $r 2^{2r+1}$ (d) $(2r+1) 2^r$

If $\frac{x^3}{(2x-1)(x+2)(x-3)}$ 11.

 $=A+\frac{B}{2x-1}+\frac{C}{x+2}+\frac{D}{x+3}$ then A is equal

- (b) $-\frac{1}{50}$ (c) $-\frac{8}{25}$ (d) $\frac{27}{25}$
 - $\sum_{n=1}^{\infty} \frac{2n^2 + n + 1}{n!}$ is equal to:

12.

(a) 2e-1 (b) 2e+1 (c) 6e-1 (d) 6e+1

If |a| < 1, $b = \sum_{k=1}^{\infty} \frac{a^k}{k}$ then a is equal to:

- (a) $\sum_{k=1}^{\infty} \frac{(-1)^k b^k}{k}$ (b) $\sum_{k=1}^{\infty} \frac{(-1)^{k-1} b^k}{k!}$
- (c) $\sum_{k=1}^{\infty} \frac{(-1)^k b^k}{(k-1)!}$ (d) $\sum_{k=1}^{\infty} \frac{(-1)^{k-1} b^k}{(k+1)!}$

If x is real, then the minimum value of 14. $\frac{x^2-x+1}{x^2+x+1}$, is:

- (a) $\frac{1}{2}$ (b) 3 (c) $\frac{1}{2}$
- (d) 1 if 1 is a root of

 $E_1: a+b+c=0$, 15. $ax^2 + bx + c = 0.$

 E_2 : $b^2 - a^2 = 2ac$, if $\sin \theta$, $\cos \theta$ are the roots of $ax^{2} + bx + c = 0$.

Which of the following is true?

- (a) E_1 is true, E_2 is true
- (b) E_1 is true, E_2 is false
- (c) E1 is false, E2 is true
- (d) E_1 is false, E_2 is false

The roots of the equation $x^3 - 3x - 2 = 0$ are: 16.

- (a) 1, -1, 2
- (b) -1, 1, -2
- (c) 1, 2, -3
- (d) 1, -1, -2

17. If
$$\alpha$$
, β , γ are the roots of $x^3 + 2x^2 - 3x - 1 = 0$, then $\alpha^{-2} + \beta^{-2} + \gamma^{-2} = (a) 12$ (b) 13 (c) 14 (d) 15

18. If
$$m[-3 4] + n[4 -3] = [10 -11]$$

then $3m + 7n$ is equal to:

then
$$3m + 7n$$
 is equal to:
(a) 3 (b) 5 (c) 10 (d) 1

19.
$$adj\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b \end{bmatrix}$$

then
$$[a b]$$
 is equal to:

(a)
$$\begin{bmatrix} -4 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} -4 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 4 & -1 \end{bmatrix}$

20. If
$$A = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$
 then $A^3 - A^2$ is equal to :

21. If
$$\alpha_1$$
, α_2 , α_3 respectively denote the moduli of the complex number $-i$, $\frac{1}{3}(1+i)$ and

$$-1+i$$
, then their increasing order is :

(a)
$$\alpha_1$$
, α_2 , α_3 . (b) α_3 , α_2 , α_1

(c)
$$\alpha_2$$
, α_1 , α_3 (d) α_3 , α_1 , α_2

22. If
$$\alpha$$
 is a non-real root of $x^6 = 1$, then
$$\frac{\alpha^5 + \alpha^3 + \alpha + 1}{\alpha^2 + 1}$$
 is equal to:

$$\alpha^2 + 1$$

(a) α^2 (b) 0 (c) $-\alpha^2$ (d) α

23. If
$$\cos \theta - 4 \sin \theta = 1$$
 then $\sin \theta + 4 \cos \theta$ is equal to:

(a)
$$\pm 1$$
 (b) 0 (c) ± 2 (d) ± 4

24. The extreme values of
$$4\cos(x^2)\cos\left(\frac{\pi}{3} + x^2\right)\cos\left(\frac{\pi}{3} - x^2\right)$$

25. If
$$\frac{\tan 3A}{\tan A} = a$$
 then $\frac{\sin 3A}{\sin A}$ is equal to :

(a)
$$\frac{2a}{a+1}$$
 (b) $\frac{2a}{a-1}$ (c) $\frac{a}{a+1}$ (d) $\frac{a}{a-1}$

26. If
$$A + C = 2B$$
 then $\frac{\cos C - \cos A}{\sin A - \sin C}$ is equal to:

(a)
$$\cot B$$
 (b) $\cot 2B$
(c) $\tan 2B$ (d) $\tan B$

27.
$$A + B = C \Rightarrow \cos^2 A + \cos^2 B + \cos^2 C - 2\cos A \cos B \cos C$$
 is equal to:
(a) 1 (b) 2 (c) 0 (d) 3

28. If
$$\cos 2x = (\sqrt{2} + 1) \left(\cos x - \frac{1}{\sqrt{2}}\right)$$
, $\cos x \neq \frac{1}{2}$

then
$$x \in :$$
(a) $\left\{ 2n\pi \pm \frac{\pi}{3} : n \in Z \right\}$

(b)
$$\left\{2n\pi \pm \frac{\pi}{6} : n \in Z\right\}$$

(c)
$$\left\{2n\pi\pm\frac{\pi}{2}:n\in Z\right\}$$

(d)
$$\left\{2n\pi \pm \frac{\pi}{4} : n \in Z\right\}$$

29.
$$\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{1}{3}$$
 is equal to :

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) 0

30. 2
$$\tanh^{-1} \frac{1}{2}$$
 is equal to :

31. In a
$$\triangle ABC$$
, $a(\cos^2 B + \cos^2 C) + \cos A$
 $(c\cos C + b\cos B)$ is equal to:

(a)
$$a$$
 (b) b (c) c (d) $a+b+c$
32. In a $\triangle ABC$, $\sum (b+c) \tan \frac{A}{2} \tan \left(\frac{B-C}{2}\right)$ is

equal to:
(a)
$$a$$
 (b) b (c) c (d) 0

Two sides of a triangle are given by the 33. roots of the equation $x^2 - 5x + 6 = 0$ and the angle between the sides is $\frac{\pi}{3}$. Then the perimeter of the triangle is:

(a)
$$5 + \sqrt{2}$$
 (b) $5 + \sqrt{3}$ (c) $5 + \sqrt{5}$ (d) $5 + \sqrt{7}$

A tower, of x metres high, has a flagstaff 34. at its top. The tower and the flagstaff subtend equal angles at a point distant y metres from the foot of the tower. Then the length of the flagstaff (in metres), is :

(a)
$$\frac{y(x^2 - y^2)}{(x^2 + y^2)}$$
 (b) $\frac{x(y^2 + x^2)}{(y^2 - x^2)}$

(c)
$$\frac{x(x^2+y^2)}{(x^2-y^2)}$$
 (d) $\frac{x(x^2-y^2)}{(x^2+y^2)}$

35.	If the vector	$\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$ and \overrightarrow{b} are
	collinear and	$ \overrightarrow{\mathbf{b}} = 21$, then $\overrightarrow{\mathbf{b}}$ is equal to:

(a)
$$\pm (2\hat{i} + 3\hat{j} + 6\hat{k})$$

(b)
$$\pm 3(2\hat{i} + 3\hat{j} + 6\hat{k})$$

(c)
$$(\hat{i} + \hat{j} + \hat{k})$$

(d)
$$\pm 21 (2 \hat{i} + 3 \hat{j} + 6 \hat{k})$$

36. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are unit vectors, then the vector $(\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{a} \times \overrightarrow{b})$ is parallel to the vector:

(a)
$$\overrightarrow{a} - \overrightarrow{b}$$

(b)
$$\overrightarrow{a} + \overrightarrow{b}$$

(c)
$$2\overrightarrow{a} - \overrightarrow{b}$$

(b)
$$\overrightarrow{a} + \overrightarrow{b}$$

(d) $2\overrightarrow{a} + \overrightarrow{b}$

(A)
$$[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]$$
 1. $|\overrightarrow{a}|\overrightarrow{b}|\cos(\overrightarrow{a}\overrightarrow{b})$

(B)
$$(\overrightarrow{c} \times \overrightarrow{a}) \times \overrightarrow{b}$$
 2. $(\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}$

(C)
$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$$
 3. $\overrightarrow{a} \cdot \overrightarrow{b} \times \overrightarrow{c}$

(D)
$$\overrightarrow{a} \cdot \overrightarrow{b}$$

39.

4.
$$|\overrightarrow{a}| |\overrightarrow{b}|$$

5. $(\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}$

Then the correct match for List I from List II is:

A: Three vectors are coplanar if one of them is expressible as a combination of the other two.

R: Any three coplanar vectors are linearly dependent.

Then which of the following is true?

- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is not the correct explanation of A
- (c) A is true, but R is false
- (d) A is false, but R is true

A coin and six faced die, both unbiassed, 40. are thrown simultaneously. The probability of getting a head on the coin and an odd number on the die, is:

(a)
$$\frac{1}{2}$$
 (b) $\frac{3}{4}$ (c) $\frac{1}{4}$ (d) $\frac{2}{3}$

(b)
$$\frac{3}{4}$$

(c)
$$\frac{1}{4}$$

41. A number
$$n$$
 is chosen at random from $S = \{1, 2, 3, ..., 50\}$. Let

$$A = \left\{ n \in S : n + \frac{50}{n} > 27 \right\}, B = \{ n \in S : n \text{ is a}$$

prime} and $C = \{ n \in S : n \text{ is a square} \}$. Then correct order of their probabilities is :

- (a) P(A) < P(B) < P(C)
- (b) P(A) > P(B) > P(C)
- (c) P(B) < P(A) < P(C)
- (d) P(A) > P(C) > P(B)
- Box A contains 2 black and 3 red balls, 42. while Box B contains 3 black and 4 red balls. Out of these two boxes one is selected at random; and the probability of choosing Box A is double that of Box B. If a red ball is drawn from the selected box, then the probability that it has come from Box B, is
 - (a) $\frac{21}{41}$ (b) $\frac{10}{31}$ (c) $\frac{12}{31}$ (d) $\frac{13}{41}$

43. If the range of a random variable X is {0, 1, 2, 3, 4,} with
$$P(X = k) = \frac{(k+1)a}{3^k}$$
 for

 $k \ge 0$, then a is equal to:

- (a) $\frac{2}{3}$ (b) $\frac{4}{9}$ (c) $\frac{8}{27}$ (d) $\frac{16}{81}$

For a binomial variate X with n = 6, if 44. P(X=2)=9 P(X=4), then its variance is: (a) $\frac{8}{9}$ (b) $\frac{1}{4}$ (c) $\frac{9}{8}$ (d) 4

If a point P moves such that its distances 45. from the point A (1, 1) and the line x+y+2=0 are equal, then the locus of P is:

- (a) a straight line
- (b) a pair of straight lines
- (c) a parabola (d) an ellipse
- The area (in square units) of the triangle 46. formed by the lines x = 0, y = 0 and 3x + 4y = 12, is:
 - (a) 3
- (b) 4
- (c) 6
- (d) 12

If PM is the perpendicular from P (2, 3) 47. onto the line x + y = 3, then the co-ordinates of M are:

(a) (2, 1) (b) (-1, 4) (c) (1, 2) (d) (4, -1)

The equation of the straight 48. perpendicular to 5x - 2y = 7 and passing through the point of intersection of the lines 2x + 3y = 1 and 3x + 4y = 6, is:

(a) 2x + 5y + 17 = 0 (b) 2x + 5y - 17 = 0

(c) 2x - 5y + 17 = 0 (d) 2x - 5y = 17

The area of the triangle formed by the pair 49. of straight lines

 $(ax + by)^2 - 3(bx - ay)^2 = 0$ and ax + by + c = 0, is:

(a) $\frac{c^2}{a^2 + b^2}$ (b) $\frac{c^2}{2(a^2 + b^2)}$

(c) $\frac{c^2}{\sqrt{2}(a^2+b^2)}$ (d) $\frac{c^2}{\sqrt{3}(a^2+b^2)}$

The product of the perpendicular distances 50. from the origin on the pair of straight lines

 $12x^{2} + 25xy + 12y^{2} + 10x + 11y + 2 = 0, \text{ is } :$ (a) $\frac{1}{25}$ (b) $\frac{2}{25}$ (c) $\frac{3}{25}$ (d) $\frac{4}{25}$

51. The direction cosines of the line passing through P (2, 3, -1) and the origin are:

(a) $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$, $\frac{1}{\sqrt{14}}$

(b) $\frac{2}{\sqrt{14}}$, $\frac{-3}{\sqrt{14}}$, $\frac{1}{\sqrt{14}}$

(c) $\frac{-2}{\sqrt{14}}$, $\frac{-3}{\sqrt{14}}$, $\frac{1}{\sqrt{14}}$

(d) $\frac{2}{\sqrt{14}}$, $\frac{-3}{\sqrt{14}}$, $\frac{-1}{\sqrt{14}}$

52. The point collinear with (1, -2, -3) and (2, -3)0, 0) among the following is:

(a) (0, 4, 6)

(b) (0, -4, -5)

(c) (0, -4, -6)(d) (0, -4, 6)53. The equation of the circle whose diameter

> is the common chord of the circles $x^2 + v^2 + 2x + 3y + 2 = 0$

and $x^2 + u^2 + 2x - 30 - 4 = 0$ is :

(a) $x^2 + y^2 + 2x + 2y + 2 = 0$

(b) $x^2 + y^2 + 2x + 2y - 1 = 0$

(c) $x^2 + y^2 + 2x + 2y + 1 = 0$

(d) $x^2 + y^2 + 2x + 2y + 3 = 0$

If x-y+1=0 meets 54. $x^2 + y^2 + y - 1 = 0$ at A and B, then the equation of the circle with AB as diameter

(a) $2(x^2 + y^2) + 3x - y + 1 = 0$

(b) $2(x^2+y^2)+3x-y+2=0$

(c) $2(x^2+y^2)+3x-y+3=0$

(d) $x^2 + y^2 + 3x - y + 1 = 0$

If y = 3x is a tangent to a circle with centre 55. (1, 1), then the other tangent drawn through (0, 0) to the circle is:

(a) 3y = x

(b) y = -3x(c) y = 2x(d) y = -2x

The parabola with directrix 56. x + 2y - 1 = 0 and focus (1, 0) is:

(a) $4x^2 - 4xy + y^2 - 8x + 4y + 4 = 0$

(b) $4x^2 + 4xy + y^2 - 8x + 4y + 4 = 0$

(c) $4x^2 + 5xy + y^2 + 8x - 4y + 4 = 0$

(d) $4x^2 - 4xy + y^2 - 8x - 4y + 4 = 0$

57. The line among the following which touches the parabola $y^2 = 4ax$, is:

(a) $x + my + am^3 = 0$

(b) $x - my + am^2 = 0$

(c) $x + my - am^2 = 0$

(d) $y + mx + am^2 = 0$

The cartesian form of the polar equation 58. $\theta = \tan^{-1} 2$ is:

(a) x = 2y (b) y = 2x (c) x = 4y (d) y = 4x

Which of the following equations gives a 59. circle?

(a) $r = 2 \sin \theta$ (b) $r^2 \cos 2\theta = 1$

(c) $r(4\cos\theta + 5\sin\theta) = 3$

- (d) $5 = r(1 + \sqrt{2} \cos \theta)$
- $\lim_{x \to 0} x^2 \sin \frac{\pi}{x} \text{ is equal to :}$ 60.

(a) 1

- (c) does not exist (d) ∞
- 61. If $f: R \to R$ is defined by

 $f(x) = \begin{cases} \frac{x-2}{x^2 - 3x + 2} & \text{if} & x \in R - \{1, 2\} \\ 2 & \text{if} & x = 1 \\ 1 & \text{if} & x = 2 \end{cases}$ then $\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} =$

(a) 0 (b) -1 (c) 1 (d) $-\frac{1}{2}$

62.

$$f(x) = \begin{cases} \frac{x+2}{x^2 + 3x + 2} & \text{if} & x \in R - \{-1, -2\} \\ -1 & \text{if} & x = -2 \\ 0 & \text{if} & x = -1 \end{cases}$$

then f is continuous on the set:

- (a) R
- (b) $R \{-2\}$
- (c) $R \{-1\}$
- (d) $R \{-1, -2\}$

If $f: R \to R$ is an even function which is 63. twice differentiable on R and $f''(\pi) = 1$, then $f'''(-\pi)$ is equal to:

- (a) 1
- (b) 0
- (c) 1
- (d) 2

Observe the following statements: 64.

I.
$$f(x) = ax^{41} + bx^{-40} \Rightarrow \frac{f''(x)}{f(x)} = 1640 x^{-2}$$

II.
$$\frac{d}{dx} \tan^{-1} \left(\frac{2x}{1 - x^2} \right) = \frac{1}{1 + x^2}$$

Which of the following is correct?

- (a) I is true, but II is false
- (b) Both I and II are true
- (c) Neither I nor II is true
- (d) I is false, but II is true

If $f(x) = 10 \cos x + (13 + 2x) \sin x$ 65. then f''(x) + f(x) is equal to:

- (a) $\cos x$
- (b) 4 cos x
- (c) $\sin x$
- (d) 4 sin x

If $x\sqrt{1+y} + y\sqrt{1+x} = 0$ then $\frac{dy}{dx}$ is equal 66.

(a)
$$\frac{1}{(1+x)^2}$$
 (b) $-\frac{1}{(1+x)^2}$

- (c) $\frac{1}{1}$
- (d) $\frac{1}{2}$

A stone thrown upwards, has its equation 67. of motion $s = 490t - 4.9t^2$. Then maximum height reached by it, is :

- (a) 24500
- (b) 12500
- (c) 12250
- (d) 25400

The radius of a circular plate is increasing 68. at the rate of 0.01 cm/sec when the radius is 12 cm. Then the rate at which the area increases, is:

- (a) $0.24 \pi \text{ sq. cm/sec}$
- (b) 60 π sq. cm/sec
- (c) 24 π sq. cm/sec
- (d) 1.2 π sq. cm/sec

Observe the following statements: 69.

A: $f(x) = 2x^3 - 9x^2 + 12x - 3$ is increasing outside the interval (1, 2)

 $R: f'(x) < 0 \text{ for } x \in (1, 2).$

Then which of the following is true?

- (a) Both A and R are true, and R is not the correct reason for A
- (b) Both A and R are true, and R is the correct reason for A
- (c) A is true but R is false
- (d) A is false but R is true

If $u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$, then the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is:

- (b) 1 (d) none of these

If $\int \frac{\sin x}{\cos x (1 + \cos x)} dx = f(x) + c \text{ then } f(x) \text{ is}$

- (a) $\log \left| \frac{1 + \cos x}{\cos x} \right|$ (b) $\log \left| \frac{\cos x}{1 + \cos x} \right|$ (c) $\log \left| \frac{\sin x}{1 + \sin x} \right|$ (d) $\log \left| \frac{1 + \sin x}{\sin x} \right|$

72. $\int \frac{x^{49} \tan^{-1}(x^{50})}{(1+x^{100})} dx = k (\tan^{-1}(x^{50}))^2 + c$

- then k is equal to:
- (a) $\frac{1}{50}$ (b) $-\frac{1}{50}$ (c) $\frac{1}{100}$ (d) $-\frac{1}{100}$
- $\int_{0}^{\pi/2} \frac{200 \sin x + 100 \cos x}{\sin x + \cos x} dx \text{ is equal to :}$
- (a) 50π (b) 25π (c) 75π
- 74. $\int_{0}^{\pi} \frac{\theta \sin \theta}{1 + \cos^{2} \theta} d\theta \text{ is equal to :}$
- (b) $\frac{\pi^3}{2}$
- (c) π²

If $\int \sin^{-1} \left(\frac{2x}{1+x^2} \right) dx = f(x) - \log(1+x^2) + c$

- (a) $2x \tan^{-1} x$ (b) $-2x \tan^{-1} x$
- (c) $x \tan^{-1} x$
- (d) $-x \tan^{-1} x$

- The area (in square units) bounded by the 76. curves $y^2 = 4x$ and $x^2 = 4y$ in the plane is: (a) $\frac{8}{3}$ (b) $\frac{16}{3}$ (c) $\frac{32}{3}$ (d) $\frac{64}{3}$

- dx + dy = (x + y) (dx dy)77. Ιf $\log (x + y)$ is equal to :
 - (a) x + y + c
- (b) x + 2y + c
- (c) x-y+c
- (d) 2x + y + c

(In the above, c denotes a constant)

- If $x^2y x^3 \frac{dy}{dx} = y^4 \cos x$ then $x^3 y$ is equal 78. to:

 - (a) sin x
- (b) $2 \sin x + c$
- (c) $-3 \sin x + c$
- (d) $3\cos x + c$

- Observe the following statements : 79.
 - I. If $dy + 2xy dx = 2e^{-x^2} dx$ then

$$ye^{x^2} = 2x + c$$

II. If $ye^{-x^2} - 2x = c$ then

$$dx = (2e^{-x^2} - 2xy) dy$$

Which of the following is a correct statement?

- (a) Both I and II are true
- (b) Neither I nor II is true
- (c) I is true, II is false
- (d) I is false, II is true
- If $\frac{dy}{dx} = \frac{y + x \tan \frac{y}{x}}{x}$ then $\sin \frac{y}{x}$ is equal to: 80. (a) cx^2 (b) cx (c) cx^3 (d) cx^4

Answers

PHYSICS

- 9. (b) 10. (a) 8. (c) 5. (d) 6. (a) 7. (a) (c) (c) 4. 1. (c) 2. (b) 3.
- (c) 19. (a) 20. (d) 16. (c) 17 (d) 18. 15. (a) 14. (c) 12. (b) 13. (c) 11. (d)
- 29. 30. (d) 27. (c) 28. (b) (b) 26. (c) 25. (a) 23. (b) 24. (a) 21. (d) 22. (b)
- (c) 38. (a) 39. (b) 40. (a) 37. (b) 36. 33. (c) 34. (c) 35. (c) (c) 32. (c)

CHEMISTRY

- (d) 10. (c) 9. 6. (d) 7. (c) 8. (c) (d) 5. (b) 1. 2. (b) 3. (a) 4. (a)
- (c) (d) 20. 17 (b) 18. (a) 19. (a) 14. (d) 15. (d) 16. 11. (d) 12. (c) 13. (b)
- (d) (a) 28. (c) 29. 27. (b) 25. (b) 26. (a) 23. (d) 24. (b) (a) (b)
- (d) 40. (c) 38. (a) (c) 37. (b) (b) 35. (a) 36. (c) 32. (b) 33. (c) 34.

MATHEMATICS

- (d) (b) 10. (c) 9. 7. (c) 8. (d) 6. (a) 1. (b) 2. (c) 3. (c) 4. (a) 5.
- 20. (a) 19. (c) (b) 18. (d) (a) (a) 17 15. 16. 11. (a) 12. 14.
- (c) 13. (b) (a) (c) 29. (c) 30. 28. (d) 27. (a) (d) 21. (c) 22. (c) 23. (d) 24. (a) 25. (b) 26.
- (b) 40. (c) (b) 39. (c) 38. 31. (a) 37. (a) 32. (d) 33. (d) 34. (b) 35. (b) 36.
- (d) 50. (b) 48. (a) 49. (c) 41. (b) 42. (b) 43. (b) 44. (c) 45. (c) 46. (c) 47. 60. (b)
- (a) (b) 59. 58. 51. (c) 52. (c) 53. (c) 54. (a) 55. (a) 56. (a) 57. (b) 70. (a) 69. (a) (a) 61. (b) 62. (c) 63. (c) (b) 66. (b) 67. (c) 68. 64. (a) 65.
- 80. (b) 79. (c) 71. (a) 72. (c) 73. (c) 74. 75. 76. (b) 77. (c) 78. (c) (d) (a)