

ENGINEERING PHYSICS ENGINEERING PHYSICS

SEMESTER - 2

Nine: 3 Hours]

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

l.	Choose t	he	correct	alternatives	for	any	ten of	the	following

 $10 \times 1 = 10$

- i) Newton's ring experiment is based on
 - a) division of amplitude
 - b) division of wave-front
 - c) none of these.

ii) de Broglie wavelength of a particle of mass m and kinetic energy E is

a)
$$\lambda = \frac{h}{2m\mathcal{E}}$$

b)
$$\frac{h}{\sqrt{2mE}}$$

c)
$$\frac{\sqrt{2mE}}{h}$$

iii) Mass of a photon of frequencies v is given by

- a) $\frac{hv}{c}$
- b) $\frac{hv}{c^2}$
- c) $\frac{hv^2}{c}$

(v) The eigenvalue of the eigenfunction e^{ix} for the operator $\frac{d^2}{dx^2}$ is

- a) 1
- b) 0
- c) 1.

2441 (17,06)

v)	Miller indices of a plane which cut inte	rcepts of 2.	3 and 4 units alor	ig the unco
	axes are			
	a) (2, 3, 2)			
	b) (2, 3, 4)	a		
	c) (6, 4, 3).			
vi)	In a plane transmission grating, light			
•	a) diffracts to produce the resultant	pattern		
	b) diffracts and interfares to produce	e the resulta	ant pattern	
	c) interfares to produce the resultan	t pattern.		
vii)	The atomic radius of a face centred cub	oic crystal of	flattice constant a	is
	a) $\frac{a}{2}$			
	b) $\frac{\sqrt{3a}}{4}$			
	c) $\frac{\sqrt{2a}}{4}$.			
viii)	An X-ray tube is subjected to a p	otential di	fference of 50 k	V with the
	corresponding current of 8 mA throug			
	second on the target material is			
	a) 5×10^{16}			
	b) 6×10^{11}			• • • • • • • • • • • • • • • • • • • •
	e) none of these.			
ix)	In He-Ne laser, the laser light emits du	e to the trai	nsition from	
	a) $3s \rightarrow 2p$			
	b) $3s \rightarrow 3p$			
	c) $2s \rightarrow 2p$.			
x)	For an optical fibre, if n_0 , n_1 and n_2	are the re	fractive index of a	ir, core and
	cladding region respectively, then			
	a) $n_0 > n_2 > n_1$			
. *	b) $n_1 > n_2 > n_0$			
	c) $n_2 > n_1 > n_0$.			

2441 (17/00)

os/e.techi	O+N)/SEM-2/	/PH-201/09

xi)	If the speed of an electron increases, the specific charge							
	a) increases							
	b) decreases							
	c) remains constant.							
xii)	One milligram of matter converted into energy will give							
	a) 90 joule							
	b) 9×10^{10} joule							
	c) None of these.							
xiii)	Relative velocity of two particles moving with velocity (C) of light in opposit	e						
	direction is							
	a) C							
	b) 2 <i>C</i>							
	c) O.							
	GROUP - B							
	(Short Answer Type Questions)							
	Answer any three of the following. $3 \times 5 = 1$. 5						
a)	What is the difference between temporal coherence and spatial coherence?	2						
b)	If the amplitudes of two coherent light waves are in the ratio 1:4, find the ratio of maximum and minimum intensity in the interference pattern.	ie 3						
a)	What is Compton effect? Calculate the Compton wavelength for an electron.							
	$1\ \frac{1}{2}+1$	$\frac{1}{2}$						
b)	Why does the unmodified line appear in Compton scattering?	2						
a)	Deduce the formulae for interplaner spacing of a simple cubic crystal.	4						
p)	Why X-ray diffraction is used for crystal structure analysis?	1						
Find	the possible arrangements of two particles in three cells for							
i)	Bose-Einstein Statistics &							
ii)	Fermi-Dirac Statistics. $2\frac{1}{2} + 2$	$\frac{1}{2}$						

2.

3.

4.

5.

6	a)	Describe briefly the working principle of laser action:	3
	b)	Mention at least three main advantages of optical fibre over wire or cable?	2
7.	a)	What are the basic postulates of special theory of relativity?	2
	b)	Show that for $V \ll C$. Lorentz transformation reduces to the Galilea transformation.	n 3
8.	a)	Discuss the important characteristics of nuclear forces.	2
	b)	Why nuclear fission reaction must be done first before nuclear fusion?	3
٠			
		GROUP - C	
		(Long Answer Type Questions)	
		Answer any three questions. $3 \times 15 = 4$	E.
9.	a)	What is double refracting crystal?	Ź
	b)	Discuss Nicol prism as polarizer and analyzer.	<i>C</i> ,
	c)	Determine the Brewster's angle for glass of refractive index 1.5 immersed is water of refractive index 1.33.	r.,
	d)	Prove that the intensit of secondary maxima formed for Fraunhofer diffraction a single slit are of decreasing order.	Li.
	e)	In a plane transmission grating the angle of diffraction for 2nd order maxima for wavelength 5×10^{-5} cm is 30°. Calculate the number of lines in one centimetr of the grating surface.	
10.	a)	State and explain de Broglie hypothesis.	2
	b)	Prove that the product of phase velocity and group velocity for a de Broglie wav is equal to the square of the velocity of light.	3 5
	e)	Compute the smallest possible uncertainty in the position of an electron movin with velocity 3×10^{-7} m/s. The rest mass of electron is 9.1×10^{-31} kg.	ુ કુ
	d)		5
11.	a)		3
	b)	Plot electron distribution function governed by Fermi-Dirac statistics in metal 3 = OK and T > OK. Explain their physical significance. $2 + (3 + 5)$	20
	c)	Why Compton effect can not be observed with visible light but can be observed	d

due to X-rays?

- 12. a) Discuss the operation of a Ruby laser with the help of energy level diagram. 5 + 1
 - b) Find the numerical aperture and angle of acceptance of a given optical fibre. [Given, the refractive indices of core and cladding are 1.562 and 1.497 respectively].
 - c) In a He-Ne laser transition from 3s to 2p level gives a laser beam of wavelength 632.8 nm. If the 2p level has energy equal to 15.2×10^{-19} J, calculate the required pumping energy (assuming no loss of energy).
 - d) What is the role of optical resonator in laser production?
- Write down Schrödinger equation for one dimensional motion of a free particle in a one dimensional potential box. Find its eigenfunction and eigenenergy.

1 + 3 + 3

- b) Prove that the first excited energy state of a free particle in a cubical box has three fold degeneracy.
- c) Copper has FCC structure and the atomic radius is 0.1278 nm. Find its density and the interplaner spacing for (321) planes. The atomic weight of copper is 63.5.
- 14. a) What are the differences between inertial and non-inertial frame of references?
 - b) Deduce an expression of time dilation on the basis of Lorentz transformation equation.
 - c) Find the mass and speed of 2 MeV electron. 2 + 2
 - d) If the total energy of a particle is thrice of its rest energy, find the velocity of the particle.
 - a) What is nuclear binding energy?
 - b). Draw a binding energy curve. What informations do you set from such a curve?
 - c) Find the energy released for the following nuclear fussion reaction : $4 + H^{-1} \rightarrow {}_{2}$ He $^{4} + 2 + {}_{+1}$ e⁰ + energy

Given that mass of $_1$ H 4 atom = 1.007825 amu mass of $_2$ He 4 atom = 4.0026 amu mass of $_4$, e^0 (positron) = 0.00055 amu.

d) Differentiate conductor, insulator and semiconductor on the basis of energy band diagram.

5.