FURTHER MATHEMATICS

STANDARD LEVEL

PAPER 1

Tuesday 12 November 2002 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all ten questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures.
- Write the make and model of your calculator on the front cover of your answer booklets e.g. Casio fx-9750G, Sharp EL-9600, Texas Instruments TI-85.

You are advised to show all working, where possible. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Incorrect answers with no working will normally receive no marks.

1. Consider the group $\left(\mathbb{Z}_{12},+\right)$.
(a) Find the order of the elements 4,5 and 9 .
(b) Show that this group is cyclic. Find all possible generators.
2. Consider κ_{n} a complete graph with n vertices.
(a) Draw κ_{5} and find an Eulerian circuit in it.
(b) Find the value of n such that κ_{n} contains an Eulerian path but not an Eulerian circuit. Justify your answer.
3. Determine whether the following series converges or diverges.

$$
\frac{1}{\sqrt{2}}+\frac{3}{2}+\frac{5}{2 \sqrt{2}}+\frac{7}{4}+\frac{9}{4 \sqrt{2}}+\cdots
$$

4. Find all the integers x that satisfy the equation $2 x^{3}-3 x+1 \equiv 4(\bmod 6)$.
5. Eggs are packed in boxes of four. During one day 200 boxes were selected and the number of broken eggs in each box was recorded.

Number of broken eggs	0	1	2	3	4
Number of boxes	73	80	31	14	2

Test at the 5% level of significance whether this data follows a binomial distribution with $n=4$ and $p=0.24$.
6. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=3^{\cos x}+\frac{1}{6}$.
(a) Determine whether the function is injective or surjective, giving your reasons.
(b) If the domain of f is restricted to $[0, \pi]$ find its inverse function.
7. Consider the triangle ABC . The points M, N and P are on the sides [BC$],[\mathrm{CA}]$ and $[\mathrm{AB}]$ respectively, such that the lines (AM), (BN) and (CP) are concurrent.

Given that $\frac{\mathrm{AP}}{\mathrm{AB}}=\lambda$, and $\frac{\mathrm{CM}}{\mathrm{CB}}=\mu$, where $\lambda, \mu, \in \mathbb{R}^{+}$, find $\frac{\mathrm{NA}}{\mathrm{CN}}$.
8. Find a cubic Taylor polynomial approximation for the function $f(x)=\tan x$, about $x=\frac{\pi}{4}$.
9. A school newspaper consists of three sections. The number of misprints in each section has a Poisson distribution with parameters $0.9,1.1$ and 1.5 respectively. Misprints occur independently.
(a) Find the probability that there will be no misprints in the newspaper.
(b) The probability that there are more than n misprints in the newspaper is less than 0.5 . Find the smallest value of n.
10. Consider the hyperbola H with equation $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$. The angle between the asymptotes of H is $\frac{\pi}{3}$, as shown in the diagram below.

(a) Calculate the eccentricity of H.
(b) Find the equations of the directrices of H, giving your answers in terms of a.

