VERY SHORT ANSWER TYPE QUESTIONS

Note: Attempt all questions. Each question carries 2 marks.

- Find the equation of the straight line passing through the point (2, 3) and making non-zero intercepts on the axes of co-ordinates whose sum is zero.
- 2. If θ is the angle between the lines $\frac{x}{a} + \frac{y}{b} = 1$, $\frac{x}{b} + \frac{y}{a} = 1$, find the value of $\sin \theta$ (a > b).
- 3. For what value of t, the points (2, -1, 3), (3, -5, t), (-1, 11, 9) are collinear?
- 4. Find the equation of the plane passing through the point (1, 1, 1) and parallel to the plane x + 2y + 3z 7 = 0.
- 5. Examine the continuity of f(x) = [x] + x at the point x = 2.
- 6. Find $\lim_{x \to 0} \frac{Lt}{x \to 0} = \frac{\sin(a+bx) \sin(a-bx)}{x}$.
- 7. Find $Lt \atop x \to \infty = \frac{8|x| + 3x}{3|x| 2x}$.
- 8. If $y = \{\cot^{-1}(x^3)\}^2$, find $\frac{dy}{dx}$.
- 9. Find the approximate value of $\sqrt{82}$.
- 10. Show that the length of subnormal at any point on the curve $y^2 = 4ax$ is a constant.

 $5\times 4=20$

SHORT ANSWER TYPE QUESTIONS

Note: Answer any FIVE questions. Each question carries 4 marks.

- 11. A(2,3), B(1,5), C(-1,2) are given three points. If P is a point such that $PA^2 + PB^2 = 2PC^2$, find the locus of P.
- 12. When the origin is shifted to the point (2, 3), the transformed equation of a curve $x^2 + 3xy 2y^2 + 17x 7y 11 = 0$. Find the original equation of the curve.

- 13. Find the equations of the straight line passing through the point of intersection of the lines 3x + 2y + 4 = 0, 2x + 5y = 1 and whose distance from (2, -1) is 2 units.
- **14.** Find the derivative of the function $f(x) = x \sin x$, from the first principle rule.
- **15.** Differentiate $f(x) = Tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$ with respect to $g(x) = Tan^{-1} x$.
- 16. Sand is poured from a pipe at the rate of 12 c.c./sec. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?
- 17. If $u^2 = \frac{1}{x^2 + y^2 + z^2}$, show that $\sum \frac{\partial^2 u}{\partial x^2} = 0$.

 $5 \times 7 = 35$

LONG ANSWER TYPE QUESTIONS

Note: Answer any FIVE questions. Each question carries 7 marks.

- **18.** If the equations of the sides of a triangle are 7x + y 10 = 0, x 2y + 5 = 0 and x + y + 2 = 0, find orthocentre of the triangle.
- 19. If the equation $ax^2 + 2hxy + by^2 = 0$ represents a pair of distinct lines, then prove that the equation of the pair of bisectors of the angles between these lines is $h(x^2 y^2) = (a b)xy$.
- **20.** If the equation $mx^2 10xy + 12y^2 + 5x 16y 3 = 0$ represents a pair of straight lines, find m and also find angle and point of intersection for this value of m.
- **21.** Find the direction cosines of two lines which are connected by the relations l 5m + 3n = 0 and $7l^2 + 5m^2 3n^2 = 0$.
- **22.** If $f(x) = (a^2 b^2)^{-1/2} \cdot Cos^{-1} \left(\frac{a \cos x + b}{a + b \cos x} \right)$ then prove that $f'(x) = (a + b \cos x)^{-1}$, $(a > b > 0 \text{ and } 0 < x < \pi)$
- 23. Find the angle between the curves $2y^2 9x = 0$, $3x^2 + 4y = 0$ (In the 4th quadrant)
- 24. A window is in the shape of a rectangle surmounted by a semi-circle. If the perimeter of the window be 20 ft., find the maximum area of the window.