

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007 ANALOG COMMUNICATION

SEMESTER - 4

Time	e : 3 I	Hours	1				[Full Marks: 70
	•			Group	- A		
			(M i	ultiple Choice T	ype Que	stions)	
1.	Cho	ose th	e correct alterna	atives for any ten	of the fo	ollowing:	$10\times1=10$
	i)	The	communication	medium causes	the signa	ıl to be	
		a)	amplified		b)	modulated	
		c)	attenuated		d)	interfered with.	
	ii)	The	saving in power	in a DSBSC sys	tem mod	ulated at 80% is	
,		a)	NII .		b)	80%	
		c)	75.76%		d)	50%.	
•	iii)	A 1	MHz carrier is a	mplitude modula	ated by a	symmetrical squa	re wave of period
•		100	per sec. Which	n of the following	ng frequ	encies will not be	e present in the
		mod	ulated signal?				
		a)	990 kHz		b)	1010 kHz	
		c)	1020 kHz		d)	1030 kHz.	
je 1 (j.)	iv)	A sı	uperheterodýne	receiver with a	n IF of	450 kHz is tune	d to a signal of
. 6		120	0 kHz. The imag	e frequency is	. *		
* .		a)	750 kHz	en de la companya de La companya de la co	b)	900 kHz	
	•	c)	1650 kHz		d)	2100 kHz.	
	v)	The	theoretical band	width of FM sign	al is		
	·	a)	infinity		b)	$2f_{m}$	
	iąki".	c)	$2f_m(1+\beta)$		d)	0.	

B.Tecl	(ECE	C-NEW)/SEM-4/EC-403/07	4			Utech
vi)	If th	ne SNR of the signal is inre	ased then	the c	hannel capacity	Jun
	a)	will increase		b)	will decrease	
	c)	will remain constant		d)	cannot be determined.	
vii)	The	intermediate frequency us	sed for a s	uperl	neterodyne AM receiver is	
	a)	455 kHz		b)	755 kHz	
	c)	545 kHz	*	d)	none of these.	
viii)	A s	ource X which produces fi	ve symbo	ls wit	th probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$,	$\frac{1}{6}$ and $\frac{1}{16}$.
	The	e source entropy H (X) is		•		
	a)	1.875 b/symbols		b)	2.875 b/symbols	
	c)	3 b/symbols		d)	5.5 b/symbols.	
ix)		ach stage had a gain of 1				he overall
, .	nois	se figure of a two-stage cas	cade ampl	ifier v	vill be	•
	a)	10		b)	1.09	
	c)	1.0		d)	10.9.	
x)	Pre	- emphasis in FM systems	involves			
	a)	compression of the modu	lating sign	al		•
	b)	expansion of the modulat	ing signal			
	c)	amplification of the lower	frequency	com	ponents of the modulating	g signal
	d)	amplification of the highe	r frequenc	y con	nponents of the modulatir	ng signal.
				- J.		
xd)	In p	hase modulation the freque	ency devia	tion is		
. •	a)	independent of the modu	lating sign	al fre	quency	
	b)	inversely proportional to	the modula	ating	signal frequency	
	c)	directly proportional to th	e modulat	ing s	gnal frequency	
	d)	inversely proportional	to the so	quare	root of the modulatin	ng signal

frequency.

6. The equation for an FM wave is

 $S(t) = 10 \sin [5.7 \times 10^8 t + 5 \sin 12 \times 10^3 t]$

Calculate:

2.

3.

4.

5.

- Carrier frequency a)
- b) modulating frequency
- modulation index c)
- Frequency deviation d)
- Power dissipated in 100Ω . e)

5

Group - C

(Long Answer Type Questions)

		Answer any three questions. $3 \times 15 = 45$
7.	a)	What is the concept behind NBFM? Derive its equation.
	b)	Explain how FM can be generated using VCO.
	c)	Discuss about the roles of pre-emphasis and de-emphasis circuit in FM
		broadcasting. 4
8.	a)	Draw the block diagram for generation and detection of PCM system. 4
	b)	What is quantization? Find the signal to quantization noise ratio for PCM
		system. 5
	(c)	A signal is sampled at Nyquist rate of 8 kHz & is quantized using 8 bit uniform
		quantizer. Assuming SNRq for a sinusoidal signal, calculate bit rate., SNRq &
		BW.
9.	a)	State and prove Parseval's Power Theorem. 2 + 4
	b)	Describe with a block diagram the principle of operation of a square law
		modulator generating DSBSC.
:	c)	Explain the advantages & disadvantages of modulation.
10.	a)	Draw the block diagram of a superheterodyne receiver & explain its working
		principle.
	b)	Explain the operation of balanced modulator. 5
11.	Write	e short notes on any three of the following: 3×5
	a)	Entropy & its properties
	b)	QCM
	c)	Thermal noise
	d)	Power spectral density function
	e)	Pulse coded modulation.