1. Sun releases energy	by the process of			
A. nuclear fusion	B. nuclear disintegration	C. nuclear fission	D. spontaneous combustion	
2. The number of atom	s per unit cell in a <i>sc, bco</i>	c, and <i>fcc</i> are		
A. 1, 2 and 4 respective	-	B. 8, 6 and 10 respectiv	vely	
C. 1, 4 and 2 respective	ely	D. 2, 4 and 1 respective	ely and a second s	
			6.1	
3. In a diode, at saturat	ion current, the plate resi		4450	
A. zero	B. constant and finite	C. infinite	D. variable but finite	
1 A m a trunc and a m tru		a son he shteined has dee	in a many sili and suith	
A. sodium and magnes	pe silicon semi-conducto	B. phosphorous and bo		
C. indium and sodium	1 ·	D. boron and arsenic re		
C. marani and Sourani	respectively	D. boron and arseme re	spectroly	
5. When the plate volta	ge of a triode is 150 V, i	ts cut off voltage is -5 V.	. On increasing the plate	
voltage to 200 V, the c				
A4.5V	B5.0V	C. + 2.3 V	D6.06 V	
6 In a diode vacuum tu	ube, the plate current is 5	mA when the plate volt	age is 160 V A grid is	
	plate and cathode and a			
then become	F		- · · · · · · · · · · · · · · · · · · ·	
A. 20 mA	B. 10 mA	C. 4mA	D. 7.5mA	
7. A long spring is stret	tched by 2cm. Its			
	f the spring is stretched	S. 52		
by 10cm, its potential e	energy would be			
A. V/25 B. V/5	C. 5V D. 25V	M		
	-46 V			
	as measured by an observ		to it is half of its proper	
length. The speed of the observer with respect to rod is				
A. $3/2 c \text{ ms}^{-1}$	B. $c/2 \text{ ms}^{-1}$	C. $(\sqrt{3})/2 c \text{ ms}^{-1}$	D. $1/\sqrt{2} c \text{ ms}^{-1}$	
A		10-6	1 60 0 11	
9. A + μ -meson with a proper half-life of 1.8 x 10 ⁻⁶ s is moving with a speed of 0.9 c with				
respect to an earth observer. The half-life of this μ -meson according to an observer sitting on it				
18 A. 1.8 x 10 ⁻⁶ s	B. 1.8 x $\sqrt{0.19}$ x 10^{-6} s	$C = 1.9/10 = 10^{-6}$	D. 1.8 x 0.19 x 10 ⁶ s	
A. 1.0 X 10 S	D. 1.8 X VO.19 X 10 S	C. 1.8/ V0.19 X 10 S	D. 1.8 x 0.19 x 10 S	
10. The mass per nucleon in an ordinary hydrogen atom is				
A. 1/16th mass per nucleon in an oxygen atom				
B. slightly greater than the mass per nucleon in an oxygen atom				
	r nucleon in an oxygen a			
	D. slightly smaller than the mass per nucleon in an oxygen atom			
11. Consider the following nuclear reaction				

11. Consider the following nuclear reaction ${}_{2}\text{He}^{4} + {}_{Z}X^{A} = {}_{Z+2}Y^{A+3} + W$ What particle does *W* denote ?

A. electron	B. positron	C. proton	D. neutron			
12. The function of graphite and the control rods in a nuclear reactor are						
-	s and to shield the reactor		• 1			
	eutrons and to absorb the	-	ively			
	s neutrons and to shield t		14			
D. to absorb neutrons a	and to reduce the energy	of the neutrons respectiv	vely			
could be represented a	d nuclear reaction, $_7N^{14}$ s	was bombarded with α -	particles. The reaction			
$_{7}N^{14} + _{2}He^{4} = X + _{1}H^{1}$			- 1 -			
The element in this real 17		a v ¹⁷	L 17			
A. ${}_{8}O^{17}$	B. ${}_{8}F^{17}$	C. ₈ N ¹⁷	D. ₈ Ne ¹⁷			
14. In a Bucherer's experiment, the specific charge of some β particles is found to be 1/4th of the value determined by J.J. Thomson. The speed of these β particles is						
A. √ 5/4 c	B. √ 15/4 c	C. 1/4 c	D. c			
	otating in a plane about	a				
	momentum is directed	() /				
A. the radius	B. the tangent to orbit	· · ·				
C. line at an angle of		1000				
45° to the plane of	D. the axis of rotation	- Pro	6			
rotation						
16. A photo-cell with a constant p.d. of V volts across it, is illuminated by a point source from a						

16. A photo-cell with a constant p.d. of V volts across it, is illuminated by a point source from a distance 25 cm. When the source is moved to a distance of 1 m, the electrons emitted by the photo-cell

A. carry 1/4th their previous energy C. are 1/4th as numerous as before B. are 1/16th as numerous as before D. carry 1/4th their previous momentum

17. A convex lens of focal length 40 cm is in contact with a concave lens of focal length 25 cm. The power of combination is

A. -1.5D B. -6.5D C. 1.5 D D. 6.5 D

18. A prism splits a beam of white light into its seven constituent colours. This is so becauseA. phase of different colour is differentB. amplitude of different colours is differentD. velocity of different colours is different

19. A prism has a refracting angle of 60° when a ray of light is incident on its face at 45° , it suffers minimum deviation. The angle of minimum deviation is

A. 30°B. 60°C. 45°D. 90°20. A car driver sees an image of a bus in his
driving mirror, which has a radius of curvature
of 4 m. The bus which is 10 m long, is parallelD. 90°

to and following the car in front of the bus 18 m from the mirror. The apparent length of the bus as seen in the mirror is A. 700 mm B. 670 mm C. 800 cm D. 800 mm 21. A single slit of width d is placed in the path of a beam of wavelength λ . The angular width of principal maximum obtained is A. d/λ B. λ/d C. $2\lambda/d$ D. $2d/\lambda$ 22. A closed tube, partly filled with a liquid & set horizontal, is rotated about a vertical axis passing through its centre. In the process, the moment of inertia of the system about its axis would A. increase always B. decrease always D. increase if tube is less than half filled. C. remain constant decrease otherwise 23. In an A.C. circuit the instantaneous current through and voltage across a capacitor are represented as I = I₀ sin ($\omega t + \pi/4$) and v = V₀ sin ($\omega t + \pi/8$) respectively. The current leads the voltage by A. $\pi/4$ B. $3\pi/8$ C. $\pi/2$ D. $\pi/8$ 24. A transformer having 2100 turns in the primary and 4200 turns in the secondary has an a.c. source of 120 V, 10 A connected to its primary. Then the secondary voltage and current are C. 240 V and 10 A A. 240 V and 5 A B. 120 V and 10 A D. 120 V and 20 A 25. When a magnet falls through a metal ring, acceleration through the metal ring during the free falls is A. less than *g* throughout its fall B. less than g when it is above the ring and more than g when it is below the ring C. more than g throughout its fall D. more than g when it is above the ring and less than g when it is below the ring 26. A copper rod is suspended in a non-homogeneous magnetic field region. The rod when in equilibrium, will then align itself A. in the region where the magnetic field is strongest B. in the direction in which it was originally suspended C. in the region where the magnetic field is weakest and parallel to the direction of the magnetic field there D. none of these 27. The substance which shows permanent magnetism is called A. anti-ferromagnetic B. paramagnetic C. diamagnetic D. ferromagnetic 28. A magnetic substance is heated to 800 K and then cool down slowly to 300 K, then it B. retains its magnetism below curie points examrace.com A. retains its magnetism

B. $V_A = V_B \neq V_C$ C. $V_A \neq V_B \neq V_C$ A. $V_A = V_B = V_C$ 34. The mass of a proton is 1847 times that of an electron. An electron and a proton are projected into a uniform electric field in a direction of right angles to the direction of

the field with the same initial kinetic energy. Then

A. both the trajectories will be equally curved

B. the proton trajectory will be less curved than the electron trajectory

C. the electron trajectory will be less curved than the proton trajectory

D. the relative curving of the trajectories will be dependent on the value of initial kinetic energy

35. The wavelength of maximum radiation from the moon is 14×10^{-6} m. If the value of the constant in Wein's displacement law is 0.00293 mK, the surface temperature of moon is A. 207 K B. 146 K C. 227 K D. 103.5 K

36. A given mass of gas is subjected to an external pressure of 0.5 x 10^{10} N/m². If $K = 10^{10}$ Nm⁻², the ratio of the density before and after applying the pressure is A.1:1 **B**. 1 : 2 C. 2 : 1 D.1:4

37. The heat reservoir of an ideal Carnot engine is at 800 K and its sink is at 400 K. The amount of heat taken in it in one second to produce useful mechanical work at the rate of 750 K www.examrace.com

has 50% ef	ficiency. If	B. 1125 J ith its cold b he temperate by 145°C, th	ure of its hot	-	D. 750 J
becomes		oj 1 io 0, u			
A. 55%	B. 60%	C. 40%	D. 45%		10
	cient of volu	n increases i me expansio B. 1 x 10 ⁻⁶	on of the wire	10^{-4} m when heated throu e is C. 3 x 10^{-6}	ugh 10 ² degree celsius. D. 4 x 10 ⁻⁶
40. The pit	ch of a soun	d wave is re	lated to its		CV YF
A. frequen	cy	B. amplitu	de	C. velocity	D. beats
	s <i>m</i> is hung t osition; this		fter some tir	ne, it was observed that	mass <i>m</i> moves up from
A. decrease temperatur	e in	B. increase temperatur		C. the statement is wrong	D. change in humidity
in parallel;	the equivale	ent force con	stant of the		and the two are connected
A. 16 Nm ⁻	1	B. 32 Nm ⁻¹		C. 8 Nm ⁻¹	D. 24 Nm ⁻¹
43. A light	spring of co	nstant k is c	ut into two e	qual parts. The spring co	onstant of each part is
A. <i>k</i>		B. 2 <i>k</i>	41	C. <i>k</i> /2	D. 4 <i>k</i>
44. A wave	equation w	hich gives the 10^{-4} sin (6)	e displacem	ent along y-	
direction is given by $y = 10^{-4} \sin (60t + x)$ where x and y are in meters and t is time in seconds. This represents a wave					
A. travelling with a velocity of 300 ms ⁻¹ in the -ve x-					
direction					
B. of wavelength π meters					
C. of frequency $30/\pi$ hertz					
D. of amplitude 10^4 meter travelling along the positive <i>x</i> -					
direction					
45. The periodic times T of a simple pendulum are observed for different length l. If a graph of					
log T against log l is plotted, the slope of the graph is					
A. 2	1			B. 1/2	
C. √ 2				D. 1/√2	
	rily, the valu			ation varies from	
A. 0 to1		B. 0 to 0.5		C. –1 to +1	D0.5 to +0.5
47. In a gravitational field, if a body is bound with earth, then total mechanical energy it has is					
A. $a + ve va$	alue	B. a zero v	alue	C. a -ve value	D. K.E. less than P.E.

48. The mass of a planet is twice the mass of earth and diameter of the planet is thrice the diameter of the earth, then the acceleration due to gravity on the planet's surface is D. $3g/\sqrt{2}$ B. 2g C. 2g/9A. g/249. A stationary bomb explodes into two parts of masses 3 kg and 1 kg. The total K.E. of the two parts after explosion is 2400J. The K.E. of the smaller part is D 2160 J A 600 J B 1800 J C 1200 J 50. In a perfectly elastic collision B. only momentum is conserved A. both momentum and K.E. are conserved D. neither K.E. nor momentum is conserved C. only K.E. is conserved 51. A bullet of mass 7g is fired at a velocity of 900 ms⁻¹ from a rifle of mass 3.5 kg. What is the recoil velocity of the rifle? $A 0.9 \text{ ms}^{-1}$ B 180 ms⁻¹ D 1.8 ms⁻¹ C 900 ms⁻¹ 52. In the arrangement shown in the figure, P and Q are in inflexible strings moving downward with uniform speed U, pulleys A and B are fixed. Mass M move upwards with a speed of A. 2 U cos θ B. U/cos θ C. $2U/\cos\theta$ D. U cos θ 53. The figure shows the angular velocity-time graph of a flywheel. The angle, in radians. through which the flywheel turns during 25 sec is A. 75 B 480 30 ω C. 615 D. 750 rad/s 20 25 Time (sec)

54. A ball is dropped from the top of a building 100m high. At the same instant another ball is thrown upwards with a velocity of 40 ms^{-1} from the bottom of the building. The two balls will meet after

A. 5 sec B. 2.5 sec C. 2 sec D. 3 sec

55. A train accelerating uniformly from rest attains a maximum speed of 40 ms⁻¹ in 20 seconds. It travels at this speed for 20 seconds and is brought to rest with uniform retardation in further 40 seconds. What is the average velocity during this period?

A. $80/3 \text{ ms}^{-1}$ B. 40 ms⁻¹ C. 25 ms⁻¹ D. 30 ms⁻¹

56. Two bodies are held and separated by 19.8m vertically one above the other. They are released simultaneously to fall freely under gravity. After 2 seconds, the relative distance between them is:

moves in a straight line ms ⁻² . The time at which from the starting point	B. 19.6m th a velocity of 2 ms ⁻¹ an e with a retardation of 0.1 h the particle is 1.5 m far is C. 30 sec D. 40 sec	l	D. 39.2m			
58. The units of curren A. 1 A	t in C.G.S. system is B. 1/10 A	C. 1/100 A	D. 1/1000 A			
59. The units of electri A. volt/metre	c field are B. volt ² /metre	C. volt x metre	D. metre ²			
60. The unit of momen A. kg-m	t of inertia is B. kg-m ²	C. kg/m	D. kg/m ²			
manufacture of A. B.	A. B.					
petrol plastics62. Brown ring test is up	44	(mil				
A. iodide	B. nitrate	C. iron	D. bromide			
63. Carbohydrates areA. for obtaining vitamiC. for all its development	ins	B. as source of energy D. for building muscle	s			
-1	ining an amide group is B. Polythene	C. Polystyrene	D. Terylene			
A	b. Forymene		D. Terylene			
A. $(C_2H_5)_4Pb$	B. TNT	C. CH ₃ MgBr	D. $(C_2H_5)_2Hg$			
 66. Carbyl amine test is used in the detection of A. aliphatic 2° amine C. aliphatic 1° amine D. both aliphatic and aromatic 1° amines 67. Aromatic primary amine when treated with cold HNO₂ gives 						
A. benzyl B. nitro alcohol benzene	D. C. benzene diazonium salt					

68. Which of petroleum A. C_{15} - C_{18}	m corresponds to kerosen B. C_{10} - C_{12}	ne oil? C. C ₅ - C ₉	D. C ₁ - C ₄	
69 Aldehydes and ket	ones can be distinguished	1 bv		
A. bromoform	B. solubility in water	•	D. Mollich test	
70. Aspirin is obtained	l by the reaction of CH ₃ C	COCl with	. 30	
A. phenol	B. benzoic Acid	C. benzaldehyde	D. salicylic acid	
71. Correct order of th	e size of iodine species is	8	AL (.)	
A. $I > I^- > I^+$	B. $I^- > I > I^+$	C. $I^+ > I > I^-$	$\mathbf{D}. \mathbf{I}^{-} > \mathbf{I}^{+} > \mathbf{I}$	
72. Nitrolin is a name	given to		(all a	
A. $CaCN_2 + C$	B. Ca ₃ (PO ₄) ₂	C. Ca(CN) ₂	D. $Ca(NO_3)_2$	
73. The pair of compo	und, which cannot exit to	ogether, is	(M)	
A. NaHCO ₃ and NaOI	H B. Na ₂ CO ₃ and NaOH	C. Na ₂ CO ₃ and NaHC	13 D. NaHCO ₃ and NaCl	
			1	
74. One of the constitution	ents of the german silver	ris		
A. Ag	B. Cu	C. Mg	D. Al	
U				
75. Which compound	-	TT	6	
A. 4-chloro, l-hydroxy butane B. 3 ^o butyl alcohol				
C. Secondary butyl amine D. n-butyl alcohol				
76 Plumbo solvancy i	mplies dissolution of lead	d in		
A. bases	B. acids	C. ordinary water	D. CuSO ₄ sol	
	22	5	·	
77. Indigo dye belong	And A state of the	a		
A. Vat dye	B. Mordant dye	C. Direct dye	D. Ingrain dye	
78. Dipole moment is	shown by			
A. 1, 4-dichloro benze	-	B. cis, 1, 2-dichloro et	hane	
C. trans, -1, 2-dichloro		D. trans, -1, 2-dichloro		
	passed through H ₂ SO ₄ co			
A. ethyl alcohol	B. acetic Acid	C. acetaldehyde	D. ethylene	
80. The compound, which does not leave any residue on heating, is				
A. NaNO ₃ B. NH ₄ NO ₃ C. CuSO ₄ D. AgNO ₃				
81. Which of the following alloys contain only Cu and Zn?				
A. Bronze	B. Brass	Cu and Zn? C. Gun metal	D. Bell metal	
II. DIVILL	D . D 1 u 55	C. Gun motul	D. Den metul	

		B. efficiency of a protective colloidsD. size of the colloidal particle			
83. Whose name is not A. Prout's	associated with the deve B. Newlands	elopment of Periodic Tab C. Rutherford	ble? D. Loother Meyer		
84. Polarisibility of hal A. F ⁻ , I ⁻ , Br ⁻ , Cl ⁻	ide ions increases in the B. Cl ⁻ , Br ⁻ , I ⁻ , F ⁻		D. F ⁻ , Cl ⁻ , Br ⁻ , I ⁻		
85. Acetylene molecule	es contain		ev		
A. 5σ bond	B. 4σ bond and 1π bond	C. 3σ and 2π	D. 3σ and 3π		
 86. The oxidation numbers A 2.5 87. In ideal gas equation A. mole-B. atm/K litre/mole 	ber of S in $NO_2S_4O_6$ is B. 2.5 n, the dimension of R is C. litre- D. erg/K atm/K/mole	C 10	D. + 10		
88. An element X whic What are the formula a	h occurs in the first shor nd acid-base character of	f its oxides?	-		
A. XO_3 , basic	B. X_2O_3 , basic	C. X_2O_3 , acidic	D. XO_2 , acidic		
	89. The uncertainty in the position of a moving bullet of mass 10 gm is 10^{-5} m. Calculate the				
uncertainty in its veloc: A. 5.2 x 10^{-28} m/sec	B. 3.0 x 10^{-28} m/sec	C. 5.2 x 10 ⁻²² m/sec	D. 3 x 10 ⁻²² m/sec		
90. Which is not param A. O_2	B. O_2^+	C. O_2^{2-}	D. O_2^{-1}		
	ated about electrochemic on of element in order of		g standard electrode		
	the relative reactivity of	metals			
C. It compares relative D. H ₂ is centrally place	strengths of oxidising ag d element	gents			
92. Which pairs of ions					
A. F ⁻ and Cl ⁻ 93. The ionization ener of O ₂ because	B. F^{-} and O^{-} gy of N_2 is more than that	C. Na ⁺ and K ⁺ at	D. Na ⁺ and Mg ⁺²		
A. of the extra stability of half filled p-orbitals in N_2	B. of the smaller size o N_2	f			
C. the former contains	D. the former is less				
less number of electrons	electronegative		www.examrace.com		

94. Stainless steel is ar A. 8% Cr, 5% Mn	n alloy of iron with B. 10% Ni, 2% Mn,	C. 2%Cr, 3%C	D. 12%Cr, 1%N
95. Highest pH (14) is A. 0.1 M H ₂ SO ₄	given by B. 0.1 M NaOH	C. 1 N NaOH	D. 1 N HCl
96. N ₂ atom has 3 unpa A. Hund's Rule	aired electrons, because o B. Uncertaintity Principle	of C. Pauli's Exclusion Principle	D. Aufbau's Rule
97. A group of atoms of A. it is a small molecu C. it is a negatively ch		only when B. it has an unshared e D. it is positively charg	
98. When potassium dichromate crystals are heated with conc. HCl,A. O_2 is evolvedB. Chromyl chloride vapours are evolvedC. Cl_2 is evolvedD. No reaction takes place99. Aluminium is more reactive than Fe. But Al is less easily corroded than iron becauseD. No reaction takes placeA. Al is noble metalB. Fe forms both mono and divalent ionsC. Al forms a protective D. Fe undergoes oxide layerD. Fe undergoes reaction easily with H_2O			
100. The ratio of C_v/C_1 A. 1.33	p for inert gas is B. 1.66	C. 2.13	D. 1.99
101. The pH of blood i A. less than 6 B C. greater than 8 and le	Cal	B. greater than 7 and le D. greater than 10	ess than 6
A. CO_2 and NH_3	e is manufactured by Solv B. CO ₂ and NH ₄ Cl	C. NaCl	d products are D. $CaC1_2$ and CaO
A. NaOH	ving which is the weakes B. Ca(OH) ₂	C. KOH	D. $Zn(OH)_2$
A. $n = 1$, $l = 1$, $m = 1$, C. $n = 1$, $l = 0$, $m = 0$, 105. The conversion of	S = -1/2 f A \rightarrow B follows second the concentration of A	for an electron in an ato B. n = 1, l = 0, m = 0, S D. n = 2, l = 0, m = 0, S	S = +1/2
factor of			www.examrac

A. 1/4	B. 2	C. 1/2	D. 9		
106. Amin A. arylatio	•	ne benzene g B. salfonia	-	protected by C. chlorination	D. acetylation
107. The li A. electror	0	n with discre B. photon	te quantities	of energy is called C. positron	D. meson
108. How A. 1	many primai	ry amines are B. 2	e possible fo	r the formula C ₄ H ₁₁ N? C. 3	D. 4
A. propana	-	lol condensa onaldehyde	tion occurs v	with B. benzaldehyde D. none of the above	
A. FehlingB. ammonC. silver nD. silver n111. 1-chlo	 110. A sample of chloroform before being used as an anaesthetic is tested by A. Fehling's solution B. ammonical cuprous chloride C. silver nitrate solution D. silver nitrate solution after boiling with alcoholic potassium hydroxide 111. 1-chlorobutane on reaction with alcoholic potash gives A. 1-butene B. 1- C. 2-butene D. 2- 				
112 The h	butanol	h is most rea	butanol	halogenation of alkanes	under sunlight is
A. chlorine	e	B. bromine	1	C. iodine	D. fluorine
113. The h A. iso octa		s expected fo B. only ket		C. n-octane	D. n-butane
	ond betweer he hybrids as		n (1) and car	rbon atom (2) in compou	and $N \equiv C - CH = CH_2$
A. sp^3 and		B. sp^3 and s	sp	C. sp and sp ²	D. sp and sp
115. If two compounds have the same empirical formula but different molecular formula, they must have					
	nt percentage	composition	1	B. different molecular D. same vapour density	-
		is shown by			
A. Butano	5.6	B. Butanol		C. Butene-1	D. Butene-2
A. Pb ²⁺ 118. The a	20	B. Cu^+ ion of the fo		h HCl and H_2S is C. Ag^+ s	D. Sn ²⁺
A.	B. LiNO ₃		D. ArCl ₃		www.examrace.com

 $Zn(NO_3)_2$ $CO(NO_3)_2$ 119. The highest degree of paramagnetism per mole of the compound at 25°C will be shown by A. MnSO₄.7H₂O B. COCl₂.6H₂O C. FeCl₃.4H₂O D. NiCl₂.6H₂O 120. Bromine can be liberated from KBr solution by the action of C. sodium chloride D. potassium iodide A. iodine solution B. chlorine water 121. If A and B be any two sets, then $(A \cup B)'$ is equal to A. $A \cap B$ B. A \cup B C. A' \cap B' D. A' 122. If $A = \{1, 2, 3, 4\}$ then which of the following are functions from A to itself A. $f_4 = \{ (x, y) : x + y = 5 \}$ B. $f_3 = \{ (x, y) : y \}$ C. $f_2 = \{ (x, y) : x + y > 4 \}$ D. $f_1 = \{ (x, y) : y = x \}$ 123. The solution of $6 + x - x^2 > 0$ is B. -2 < x < 3A. -1 < x < 2D. none of the above 2 < x1 - iz , then $|\omega| = 1$ implies that in the complex 124. If z = x + iy and plane $\omega =$ z - i B. z lies on the imaginary axis A. z lies on the unit circle D. none of the above C. z lies on the real axis 125. The first term of a G.P., whose second term is 2 and sum to infinity is 8, will be B. 3 A. 6 C. 4 D. 1 126. Equation of circle having diameters 2x - 3y = 5 and 3x - 4y = 7, and radius 8 is A. $x^2 + y^2 - 2x + 2y - 62$ B. $x^2 + y^2 + 2x + 2y - 2$ = 0 + 2x - 2yD. none of the above 62 = 0127. A and B are points in the plane such that PA/PB = K (constant) for all P on a circle. The value of K cannot be equal to A. -1/2 **B**. 1/2 C. -1 D. 1 128. If the centroid and circumcentre of a triangle are (3, 3) and (6, 2) respectively, then the orthocentre is A. (-3, 5) B. (-3, 1) C. (3, -1) D. (9, 5)

129. If sin x + cos x = 1/5, $0 \le x \le \pi$, then tan x is equal to

www.examrace.com

 $x^2 - 4x + 3$ A. $(-\infty, 2) \cup \{3, n\pi, n \ge 1\}$ B. (-∞, 2) C. $(-\infty, 2) \cup \{2n\pi, \pi/2, n = 1\}$ D. none of the above d^2x 138. If y = x is $+e^{x}$, then dy^2 A. B.-' $(1 + e^{x})^{2}$ $(1 + e^{x})^{2}$ ex D. e^x $(1 + e^{x})^{3}$ 139. At $x = 5\pi/6$, $f(x) = 2 \sin 3x + 3 \cos 3x$ is B. maximum minimum D. none of the above A. zero 140. If a < 0, the function $(e^{ax} + e^{-ax})$ is a strictly monotonically decreasing function for values of x is given by C. x < 0 D. x > 0A. x < 1 B. x > 1141. $\int [\sin(\log x) + \cos(\log x)] dx$ is equal to A. $\sin(\log x) + \cos(\log x) + c$ B. sin (log x) + cC. $x \cos(\log x) + c$ D. none of the above X 1/2 cos 142. $\pi/2 x$ -1/2 | dx is $(\pi\sqrt{2} + D)$. none of **B**. 1 A. 0 $4\sqrt{2} - 8$ / π^2 the above 143. Solution of differential equation xdy - ydx = 0 represents B. circle whose centre is at origin A. parabola whose vertex is at origin D. straight line passing through origin C. a rectangular hyperbola 144. If h(x) = f(x) + f(-x), then h(x) has got an extreme value at a point where f'(x) is A. even function B. odd function C. zero D. none of the above 145. If x = 1/3, then the greatest term in the expansion of $(1 + 4x)^8$ is B. 6th term C. 5th term A. 3rd term D. 4th term

146. Roots of $x^2 + k = 0$, k < 0 are A. real and equal B. rational C. real and distinct D. equal 147. In a quadratic equation with leading coefficient 1, a student reads the coefficient 16 of x strongly as 19 and obtains the roots as -15 and - 4. The correct roots are C. - 6, - 10i D. - 8, - 8 A. 8. 8 B. 6. 10 148. The value of m for which the equation $x^2 - mx^2 + 3x - 2 = 0$ has two roots equal in magnitude but opposite in sign is D. 1/2 A. 4/5 **B.** 3/4 C. 2/3 149. If 1/(b-a) + 1/(b-c) = 1/a + 1/c, then a, b, c are in A. H.P. B. G.P. D. none of the above C. A.P 150. If every term in G.P. is positive and also every term in the sum of two proceeding terms, then the common ratio of the G.P. is A. $(1 - \sqrt{5})/2$ B. $(\sqrt{5}+1)/2$ $(\sqrt{5} - 1)$ D. 1 151. If $y = -(x^3 + x^6/2 + x^9/3 + \dots)$, then D. $x^3 = 1 + e^y$ A. $x^3 = 1 - e^y$ C. $x^{3} = e^{y}$ B. $x^3 = \log(1 + y)$ 152. Vinay, Manish, Rahul, and Sumit have to give speeches in a class. The teacher can arrange the order of their presentation in D. 256 A. 12 ways B. 24 ways C. 4 ways wavs 153. There are n (>2) points in each of two parallel lines. Every point on one line is joined to every point on the other line by a line segment drawn within the lines. The number of points (between the lines) in which these segments intersect is B. ${}^{2n}C_2 - 2({}^{n}C_2)$ C. ${}^{2n}C_2 - 2({}^{n}C_1) + 2$ A. ${}^{n}C_{2} \times {}^{n}C_{2}$ D. none of the above 154. The number of ways in which 7 persons can sit around a table so that all shall not have the same neighbours in any two arrangements is A. 360 B. 720 C. 270 D. 180 155. The length of sub normal to the parabola $y^2 = 4ax$ at any point is equal to B. $2\sqrt{2a}$ C. $a/\sqrt{2}$ A. $a\sqrt{2}$ D. 2a 156. The expansion of $(8 - 3x)^{3/2}$ in terms of power of x is valid only if A. x > 8/3B. |x| < 8/3C. x < 3/8D. x < 8/3157. If $y = -(x^3/2 + x^3 - x^4/4 +)$, then x is A. e^y - 1 B. $\log(1 + C. e^{y} + 1)$ D. e^y www.examrace.com

A. q B. 0 C. p $D. p^2 - 2q$

162. If A, B, C are any three matrices, then A' + B' + C' is equal to D. a null matrix A. A + B + CB. (A + B + C)'C. - (A + B + C)163. If A is any matrix, then the product A.A, i.e., A^2 is defined only when A is a matrix of order B. m = nC. m < nA. m > nD. $m \ge n$ \rightarrow 164. The area of are the parallelogram of ⁱ andi+ j adjacent is which A. $\sqrt{2}$ C. 2 **B**. 1/2 D. 1 165. If the direction cosines of line are (1/c, 1/c, 1/c), then A. 0 < c < 1B. c > 2C. c > 0v Х 166. The sine of the angle between the and straight line 5 3 Δ the plane 2x - 2y + z = 5 is A. $10/(6\sqrt{5})$ B. $4/(5\sqrt{2})$ C. $\sqrt{2/10}$ D. $(2\sqrt{3})/5$ 167. Constant term in the expansion of $(x - 1/x)^{10}$ is C. - 252 A. 152 B. - 152 D. 252 168. The latus rectum of the ellipse $5x^2 + 9y$ = 45 is A. 5/3 B. 10/3 C. $(2\sqrt{5})/3$ D. √5/3 $169. i^{2} + i^{4} + i^{6} + \dots (2n + 1) \text{ terms} =$ A. - 1 C.-i D.i **B**. 1 170. If the sum of the series 2, 5, 8, 11, is 60100, then n is A. 100 **B**. 200 C. 150 D. 250 171. Two of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then A. $(b + d)(ad + be) + (e - a)^{2}(a + c + e) = 0$ B. $(b + d)(ad + be) + (e + a)^{2}(a + c + e) = 0$ C. $(b - d)(ad - be) + (e - a)^{2}(a + c + e) = 0$ D. $(b - d)(ad - be) + (e + a)^{2}(a + c + e) = 0$ 172. The probability that an event A happens on trial of an experiment is 0.4. Three independent trials of the experiment are formed. The probability that the event A happens at least once is A. 0.936 **B**. 0.784 C. 0.904 D. 0.984

173. The numbers are selected at random from 1, 2, 3, 100 and are multiplied, then the

probability correct to two places of decimals that the product thus obtained is divisible by 3, is B. 0.44 C. 0.22 A. 0.55 D. 0.33 174. If $p^2 + q^2 = 1$ and $m^2 + n^2 = 1$, then A. $| p_m + q_n B. | p_m + q_n C. | p_q + mnD. | p_q +$ $|\leq 0$ $|\leq 1$ |>1mn | < 2175. In a football championship, there were played 153 matches. Every two team played one match with each other. The number of teams participating in the championship is A. 9 **B**. 11 C. 13 D. 18 176. The solution of |(x - 1) + 2| = 1 is C. 5 A. 1 **B**. 2 D. 🗄 177. The equation $\log_e x + \log_e (1 + x) = 0$ can be written as A. $x^2 + x - e = 0$ B. $x^2 + x - 1 = 0$ C. $x^2 + x + 1$: + xe - e = 0178. Both the roots of the equation (x - b)(x - c) + (x - a)(x - c) + (x - a)(x - b) = 0 are always B. negative D. imaginary A. positive C. real 179. The value of tan x/tan 3x whenever defined never lies between A. 1/3 and B. 1/4 and C. 1/5 and D. 5 and 6 5 3 4 180. Given (a + d) > (b + c) where a, b, c, d are real numbers, then B. 1/a, 1/b, 1/c, 1/d are in A.P. A. a, b, c, d are in A.P. D. 1/(a + b), 1/(b + c), 1/(c + d), 1/(a + d) are in C. (a + b), (b + c), (c + d), (a + d) are in A.P. A.P.

