1. Sun releases energy by the process of
A. nuclear fusion
B. nuclear
disintegration
C. nuclear fission
D. spontaneous
combustion
2. The number of atoms per unit cell in a $s c, b c c$, and $f c c$ are
A. 1, 2 and 4 respectively
B. 8,6 and 10 respectively
C. 1, 4 and 2 respectively
D. 2, 4 and 1 respectively
3. In a diode, at saturation current, the plate resistance is
A. zero
B. constant and finite
C. infinite
D. variable but finite
4. An n-type and a p-type silicon semi-conductor can be obtained by doping pure silicon with
A. sodium and magnesium respectively
B. phosphorous and boron respectively
C. indium and sodium respectively
D. boron and arsenic respectively
5. When the plate voltage of a triode is 150 V , its cut off voltage is -5 V . On increasing the plate voltage to 200 V , the cut off voltage can be
A. -4.5 V
B. -5.0 V
2.3 V
D. -6.06 V
6. In a diode vacuum tube, the plate current is 5 mA when the plate voltage is 160 V . A grid is introduced between the plate and cathode and a voltage of $-2 \sqrt{ }$ is applied to it. The plate current then become
A. 20 mA
B. 10 mA
C. 4 mA
D. 7.5 mA
7. A long spring is stretched by 2 cm . Its potential energy is V. If the spring is stretched by 10 cm , its potential energy would be
A. V/25
B. V/5
C. 5 V
D. 25 V
8. The length of a rod as measured by an observer moving with respect to it is half of its proper length. The speed of the observer with respect to rod is
A. $3 / 2 \mathrm{cms}^{-1}$
B. $c / 2 \mathrm{~ms}^{-1}$
C. $(\sqrt{ } 3) / 2 \mathrm{cms}^{-1}$
D. $1 / \sqrt{ } 2 \mathrm{cms}^{-1}$
9. $\mathrm{A}+\mu$-meson with a proper half-life of $1.8 \times 10^{-6} \mathrm{~s}$ is moving with a speed of 0.9 c with respect to an earth observer. The half-life of this μ-meson according to an observer sitting on it is
A. $1.8 \times 10^{-6} \mathrm{~s}$
B. $1.8 \times \sqrt{ } 0.19 \times 10^{-6} \mathrm{~s}$
C. $1.8 / \sqrt{ } 0.19 \times 10^{-6} \mathrm{~s}$
D. $1.8 \times 0.19 \times 10^{6} \mathrm{~s}$
10. The mass per nucleon in an ordinary hydrogen atom is
A. 1/l6th mass per nucleon in an oxygen atom
B. slightly greater than the mass per nucleon in an oxygen atom
C. the same as mass per nucleon in an oxygen atom
D. slightly smaller than the mass per nucleon in an oxygen atom
11. Consider the following nuclear reaction
${ }_{2} \mathrm{He}^{4}+{ }_{\mathrm{Z}} \mathrm{X}^{\mathrm{A}}={ }_{\mathrm{Z}+2} \mathrm{Y}^{\mathrm{A}+3}+\mathrm{W}$
What particle does W denote ?
A. electron
B. positron
C. proton
D. neutron
12. The function of graphite and the control rods in a nuclear reactor are
A. to produce neutrons and to shield the reactor
B. to slow down the neutrons and to absorb the excess neutrons respectively
C. to absorb the excess neutrons and to shield the reactor respectively
D. to absorb neutrons and to reduce the energy of the neutrons respectively
13. In the first observed nuclear reaction, ${ }_{7} \mathrm{~N}^{14}$ was bombarded with α-particles. The reaction could be represented as
${ }_{7} \mathrm{~N}^{14}+{ }_{2} \mathrm{He}^{4}=\mathrm{X}+{ }_{1} \mathrm{H}^{1}$
The element in this reaction is
A. ${ }_{8} \mathrm{O}^{17}$
B. ${ }_{8} \mathrm{~F}^{17}$
C. ${ }_{8} \mathrm{~N}^{17}$
14. In a Bucherer's experiment, the specific charge of some β particles is found to be $1 / 4$ th of the value determined by J.J. Thomson. The speed of these β particles is
A. $\sqrt{5 / 4} \mathrm{c}$
B. $\sqrt{ } 15 / 4 \mathrm{c}$
15. When the mass is rotating in a plane about a fixed point, its angular momentum is directed along
A. the radius
B. the tangent to orbit
C. line at an angle of 45° to the plane of rotation
D. the axis of rotation
16. A photo-cell with a constant p.d. of V volts across it, is illuminated by a point source from a distance 25 cm . When the source is moved to a distance of 1 m , the electrons emitted by the photo-cell
A. carry $1 / 4$ th their previous energy
B. are $1 / 16$ th as numerous as before
C. are $1 / 4$ th as numerous as before
D. carry $1 / 4$ th their previous momentum
17. A convex lens of focal length 40 cm is in contact with a concave lens of focal length 25 cm . The power of combination is
A. $-1.5 D$
B. $-6.5 D$
C. 1.5 D
D. 6.5 D
18. A prism splits a beam of white light into its seven constituent colours. This is so because
A. phase of different colour is different
B. amplitude of different colours is different
C. energy of different colours is different
D. velocity of different colours is different
19. A prism has à refracting angle of 60° when a ray of light is incident on its face at 45°, it suffers minimum deviation. The angle of minimum deviation is
A. 30°
B. 60°
C. 45°
D. 90°
20. A car driver sees an image of a bus in his driving mirror, which has a radius of curvature of 4 m . The bus which is 10 m long, is parallel
to and following the car in front of the bus 18 m from the mirror. The apparent length of the bus as seen in the mirror is
A. 700 mm
B. 670 mm
C. 800 cm
D. 800 mm
21. A single slit of width d is placed in the path of a beam of wavelength λ. The angular width of principal maximum obtained is
A. d / λ
B. λ / d
C. $2 \lambda / d$
D. $2 d / \lambda$
22. A closed tube, partly filled with a liquid \& set horizontal, is rotated about a verticalaxis passing through its centre. In the process, the moment of inertia of the system about its axis would
A. increase always
B. decrease always
C. remain constant
D. increase if tube is less than half filled, decrease otherwise
23. In an A.C. circuit the instantaneous current through and voltage across a capacitor are represented as $\mathrm{I}=\mathrm{I}_{0} \sin (\omega t+\pi / 4)$ and $v=V_{0} \sin (\omega t+\pi / 8)$ respectively. The current leads the voltage by
A. $\pi / 4$
B. $3 \pi / 8$
C. $\pi / 2$
D. $\pi / 8$
24. A transformer having 2100 turns in the primary and 4200 urns in the secondary has an a.c. source of $120 \mathrm{~V}, 10 \mathrm{~A}$ connected to its primary. Then the secondary yoltage and current are
A. 240 V and 5 A
B. 120 V and 10 A
C. 240 V and 10 A
D. 120 V and 20 A
25. When a magnet falls through a metal ring, acceleration through the metal ring during the free falls is
A. less than g throughout its fall
B. less than g when it is above the ring and more than g when it is below the ring
C. more than g throughoutt its fall
D. more than g when it is above the ring and less than g
when it is below the ring
26. A copper rod is suspended in a non-homogeneous magnetic field region. The rod when in equilibrium, will therfalign itself
A. in the region where the magnetic field is strongest
B. in the direction in which it was originally suspended
C. in the region where the magnetic field is weakest and parallel to the direction of the magnetic field there
D. none of these
27. The substance which shows permanent magnetism is called
A. anti-ferromagnetic
B. paramagnetic
C. diamagnetic
D. ferromagnetic
28. A magnetic substance is heated to 800 K and then cool down slowly to 300 K , then it A. retains its magnetism
B. retains its magnetism below curie pqipts examrace.com
C. does not retain magnetism
D. none of these
29. Two heater wires of equal length are first connected in series and then in parallel. The ratio of heat produced in the two cases is
A. $2: 1$
B. 1:2
C. $4: 1$
D. 1:4
30. A galvanometer with a coil resistance of 100Ω gives a full-scale deflection when a curtent of 1 mA is passed through it. The resistance of the shunt needed to convert this galvanometer into an ammeter 5 of range 10 A is nearly
A. 0.01Ω
B. 0.001Ω
С. 0.1Ω
D. 0.099Ω
31. The resistance of a 50 cm long wire is 10Ω. The wire is stretched to uniform wire of length 100 cm . The resistance now will be
A. 15Ω
B. 30Ω
C. 20Ω
32. In the given circuit, the currents i, j, and k are in the ratio
A. 1:2:3
B. 3:2:1
C. 2:1:3
D. 3:1:2
33. A conducting sphere of radius R is given a charge Q. Consider three points B at the surface, A at centre and C at a distance $R / 2$ from the center. The electric potential at these points are such that
A. $V_{A}=V_{B}=V_{C}$
B. $V_{A}=V_{B} \neq V_{C}$
C. $V_{A} \neq V_{B} \neq V_{C}$
D. $V_{A} \neq V_{B}=V_{C}$
34. The mass of a proton is 1847 times that of an electron.

An electron and a proton are projected into a uniform electric field in a direction of right angles to the direction of the field with the same initial kinetic energy. Then
A. both the trajectories will be equally curved
B. the proton trajectory will beless curved than the electron trajectory
C. the electron trajectory will be less curved than the proton trajectory
D. the relative curving of the trajectories will be dependent
on the value of initial kinetic energy
35. The wavelength of maximum radiation from the moon is $14 \times 10^{-6} \mathrm{~m}$. If the value of the constant in Wein's displacement law is 0.00293 mK , the surface temperature of moon is
A. 207 K
B. 146 K
C. 227 K
D. 103.5 K
36. A given mass of gas is subjected to an external pressure of $0.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$. If $K=10^{10} \mathrm{Nm}^{-2}$, the ratio of the density before and after applying the pressure is
A. 1:1
B. 1:2
C. $2: 1$
D. $1: 4$
37. The heat reservoir of an ideal Carnot engine is at 800 K and its sink is at 400 K . The amount of heat taken in it in one second to produce useful mechanical work at the rate of 750 K wisw.examrace.com
A. 2250 J
B. 1125 J
C. 1500 J
D. 750 J
38. A Carnot engine, with its cold body at $17^{\circ} \mathrm{C}$ has 50% efficiency. If the temperature of its hot body is now increased by $145^{\circ} \mathrm{C}$, the efficiency becomes
A. 55%
B. 60%
C. 40%
D. 45%
39. A wire of length 1 m increases in length by $10^{-4} \mathrm{~m}$ when heated through 10^{2} degree celsius. The coefficient of volume expansion of the wire is
A. 2×10^{-6}
B. 1×10^{-6}
C. 3×10^{-6}
D. 4×10^{-6}
40. The pitch of a sound wave is related to its
A. frequency
B. amplitude
C. velocity
D. beats
41. A mass m is hung to a string. After some time, it was observed that mass m moves up from its initial position; this is due to
A. decrease in
B. increase in temperature
temperature
C. the statement is
wrong
D. change in humidity
42. A light spring of force constant $8 \mathrm{Nm}^{-1}$ is cut into two equal halves and the two are connected in parallel; the equivalent force constant of the system is
A. $16 \mathrm{Nm}^{-1}$
B. $32 \mathrm{Nm}^{-1}$
C. $8 \mathrm{Nm}^{-1}$
D. $24 \mathrm{Nm}^{-1}$
43. A light spring of constant k is cut into two equal parts. The spring constant of each part is
A. k
B. $2 k$
C. $k / 2$
D. $4 k$
44. A wave equation which gives the displacement along y -
direction is given by $y=10^{-4} \sin (60 t+x)$ where x and y are
in meters and t is time in seconds. This represents a wave
A. travelling with a velocity of $300 \mathrm{~ms}^{-1}$ in the -ve x -
direction
B. of wavelength π meters
C. of frequency $30 / \pi$ hertz
D. of amplitude 10^{4} meter travelling along the positive x direction
45. The periodic times T of a simple pendulum are observed for different length l. If a graph of $\log T$ against $\log l$ is plotted, the slope of the graph is
A. 2
B. $1 / 2$
C. $\sqrt{ } 2$
D. $1 / \sqrt{ } 2$
46. Ordinarily, the value of coefficient of restitution varies from
A. 0 tol
B. 0 to 0.5
C. -1 to +1
D. -0.5 to +0.5
47. In a gravitational field, if a body is bound with earth, then total mechanical energy it has is
A. $a+\mathrm{ve}$ value
B. a zero value
C. a -ve value
D. K.E. less than P.E.
48. The mass of a planet is twice the mass of earth and diameter of the planet is thrice the diameter of the earth, then the acceleration due to gravity on the planet's surface is
A. $g / 2$
B. $2 g$
C. $2 g / 9$
D. $3 g / \sqrt{ } 2$
49. A stationary bomb explodes into two parts of masses 3 kg and 1 kg . The total K.E. of the two parts after explosion is 2400J. The K.E. of the smaller part is
A 600 J
B 1800 J
C 1200 J
D 2160 J
50. In a perfectly elastic collision
A. both momentum and K.E. are conserved
B. only momentum is conserved
C. only K.E. is conserved
D. neither K.E. nor momentum is conserved
51. A bullet of mass 7 g is fired at a velocity of $900 \mathrm{~ms}^{-1}$ from a rifle of mass 3.5 kg . What is the recoil velocity of the rifle?
A $0.9 \mathrm{~ms}^{-1}$
B $180 \mathrm{~ms}^{-1}$
C 900 ms
D $1.8 \mathrm{~ms}^{-1}$
52. In the arrangement shown in the figure, P and Q are in inflexible strings moving downward with uniform speed U, pulleys A and B are fixed. Mass M move upwards with a speed of
A. $2 \mathrm{U} \cos \theta$
B. $U / \cos \theta$
C. $2 \mathrm{U} / \cos \theta$
D. $U \cos \theta$
53. The figure shows the angular velocity-time graph of a flywheel. The angle, in radians, through which the flywheel turns durjng 25 sec is
A. 75
B 480
C. 615
D. 750

101
54. A ball is dropped from the top of a building 100 m high. At the same instant another ball is thrown upwards with a velocity of $40 \mathrm{~ms}^{-1}$ from the bottom of the building. The two balls will meet after
A. 5 sec
B. 2.5 sec
C. 2 sec
D. 3 sec
55. A train accelerating uniformly from rest attains a maximum speed of $40 \mathrm{~ms}^{-1}$ in 20 seconds. It travels at this speed for 20 seconds and is brought to rest with uniform retardation in further 40 seconds. What is the average velocity during this period?
A. $80 / 3 \mathrm{~ms}^{-1}$
B. $40 \mathrm{~ms}^{-1}$
C. $25 \mathrm{~ms}^{-1}$
D. $30 \mathrm{~ms}^{-1}$
56. Two bodies are held and separated by 19.8 m vertically one above the other. They are released simultaneously to fall freely under gravity. After 2 seconds, the relative distance between them is:
A. 14.9 m
B. 19.6 m
C. 19.8 m
D. 39.2 m
57. A particle starts with a velocity of $2 \mathrm{~ms}^{-1}$ and moves in a straight line with a retardation of 0.1 ms^{-2}. The time at which the particle is 1.5 m far from the starting point is
A. 10 sec
B. 20 sec
C. 30 sec
D. 40 sec
58. The units of current in C.G.S. system is
A. 1 A
B. $1 / 10 \mathrm{~A}$
C. $1 / 100 \mathrm{~A}$
D. $1 / 1000 \mathrm{~A}$
59. The units of electric field are
A. volt/metre
B. volt $^{2} /$ metre
C. volt x metre
D. metre 2
60. The unit of moment of inertia is
A. kg-m
B. $\mathrm{kg}-\mathrm{m}^{2}$

61. Fischer Tropsch process is used for the manufacture of
A.

B.

synthetic
thermosetting C. ethanol
D. benzene petrol plastics
62. Brown ring test is used to detect
A. iodide
B. nitrate
63. Carbohydrates are used by bōdy mainly
A. for obtaining vitamins
B. as source of energy
C. for all its developmental needs
D. for building muscles
64. The polymer containing an amide group is
A. Nylon
B. Polythene
C. Polystyrene
D. Terylene
65. The organic compound used as antiknock agent in petroleum is
A. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~Pb}$
B. TNT
C. $\mathrm{CH}_{3} \mathrm{MgBr}$
D. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}$
66. Carbyl amine test is used in the detection of
A. aliphatic 2° amine
B. aromatic 1° amine
C. aliphatic 1° amine
D. both aliphatic and aromatic 1° amines
67. Aromatic primary amine when treated with cold HNO_{2} gives
A. benzyl B. nitro alcohol benzene
C. benzene diazonium salt
68. Which of petroleum corresponds to kerosene oil?
A. $\mathrm{C}_{15}-\mathrm{C}_{18}$
B. $\mathrm{C}_{10}-\mathrm{C}_{12}$
C. $\mathrm{C}_{5}-\mathrm{C}_{9}$
D. $\mathrm{C}_{1}-\mathrm{C}_{4}$
69. Aldehydes and ketones can be distinguished by
A. bromoform
B. solubility in water
C. Tollen's test
D. Mollich test
70. Aspirin is obtained by the reaction of $\mathrm{CH}_{3} \mathrm{COCl}$ with
A. phenol
B. benzoic Acid
C. benzaldehyde
D. salicylic acid
71. Correct order of the size of iodine species is
A. $\mathrm{I}>\mathrm{I}^{-}>\mathrm{I}^{+}$
B. $I^{-}>I>I^{+}$
C. $\mathrm{I}^{+}>\mathrm{I}>\mathrm{I}^{-}$
D. $\mathrm{I}^{-}>\mathrm{I}^{-}>\mathrm{I}$
72. Nitrolin is a name given to
A. $\mathrm{CaCN}_{2}+\mathrm{C}$
B. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
C. $\mathrm{Ca}(\mathrm{CN})_{2}$
D. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
73. The pair of compound, which cannot exit together, is
A. NaHCO_{3} and NaOH
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCl_{3}
D. NaHCO_{3} and NaCl
74. One of the constituents of the german silver is
A. Ag
B. Cu
C. Mg
D. Al
75. Which compound is optically active?
A. 4-chloro, l-hydroxy butane
B. 3^{0} butyl alcohol
C. Secondary butyl amine
D. n-butylalcohol
76. Plumbo solvancy implies dissolution of lead in
A. bases
B. acids
C. ordinary water
D. CuSO_{4} sol
77. Indigo dye belongs to
A. Vat dye
B. Mordant dye
C. Direct dye
D. Ingrain dye
78. Dipole moment is shown by
A. 1, 4-dichloro benzene
B. cis, 1, 2-dichloro ethane
C. trans, -1, 2-dichloro, 2-pentene
D. trans, -1, 2-dichloro ether
79. When acetylene is passed through $\mathrm{H}_{2} \mathrm{SO}_{4}$ containing HgSO_{4}, it gives
A. ethyl alcohol
B. acetic Acid
C. acetaldehyde
D. ethylene
80. The compound, which does not leave any residue on heating, is
A. NaNO_{3}
B. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. CuSO_{4}
D. AgNO_{3}
81. Which of the following alloys contain only Cu and Zn ?
A. Bronze
B. Brass
C. Gun metal
D. Bell metal
82. Gold number is a measure of the
A. stability of a colloidal system
B. efficiency of a protective colloids
C. coagulating power of colloids
D. size of the colloidal particle
83. Whose name is not associated with the development of Periodic Table?
A. Prout's
B. Newlands
C. Rutherford
D. Loother Meyer
84. Polarisibility of halide ions increases in the order
A. $\mathrm{F}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}$
B. $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{F}^{-}$
C. $\mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{F}^{-}$
85. Acetylene molecules contain
A. 5σ bond
B. 4σ bond and 1π bond
C. 3σ and 2π
D. 3σ and 3π
86. The oxidation number of S in $\mathrm{NO}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is
A. -2.5
B. 2.5
C. -10
D. +10
87. In ideal gas equation, the dimension of R is
A. mole-
B.
C. litre-
D. erg/K
atm $/ \mathrm{K} \quad$ litre/mole $\mathrm{atm} / \mathrm{K} / \mathrm{mole}$
88. An element X which occurs in the first short period has an outer electronic structure $\mathrm{s}^{2} \mathrm{p}^{1}$.

What are the formula and acid-base character of its oxides?
A. XO_{3}, basic
B. $\mathrm{X}_{2} \mathrm{O}_{3}$, basic
C. $\mathrm{X}_{2} \mathrm{O}_{3}$, acidic
D. XO_{2}, acidic
89. The uncertainty in the position of a moving bullet of mass 10 gm is $10^{-5} \mathrm{~m}$. Calculate the uncertainty in its velocity.
A. $5.2 \times 10^{-28} \mathrm{~m} / \mathrm{sec}$
B. $3.0 \times 10^{-28} \mathrm{~m} / \mathrm{sec}$
C. $5.2 \times 10^{-22} \mathrm{~m} / \mathrm{sec}$
D. $3 \times 10^{-22} \mathrm{~m} / \mathrm{sec}$
90. Which is not paramagnetic?
A. O_{2}
B. $\mathrm{O}_{2}{ }^{+}$
C. $\mathrm{O}_{2}{ }^{2-}$
D. $\mathrm{O}_{2}{ }^{-}$
91. What is wrongly stated about electrochemical series?
A. It is the representation of element in order of increasing or decreasing standard electrode reduction potential
B. It does not compare the relative reactivity of metals
C. It compares relative strengths of oxidising agents
D. H_{2} is centrally placed element
92. Which pairs of ions are isoelectronic?
A. F^{-}and Cl^{-}
B. F^{-}and O^{-}
C. Na^{+}and K^{+}
D. Na^{+}and Mg^{+2}
93. The ionization energy of N_{2} is more than that of O_{2} because
A. of the extra stability of half filled p-orbitals
in N_{2}
B. of the smaller size of N_{2}
C. the former contains
D. the former is less less number of electronegative
94. Stainless steel is an alloy of iron with
A. $8 \% \mathrm{Cr}, 5 \% \mathrm{Mn}$
B. $10 \% \mathrm{Ni}, 2 \% \mathrm{Mn}$,
C. $2 \% \mathrm{Cr}, 3 \% \mathrm{C}$
D. $12 \% \mathrm{Cr}, 1 \% \mathrm{~N}$
95. Highest $\mathrm{pH}(14)$ is given by
A. $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
B. 0.1 M NaOH
C. 1 N NaOH
D. 1 N HCl
96. N_{2} atom has 3 unpaired electrons, because of
A. Hund's Rule
B. Uncertaintity
Principle
C. Pauli's Exclusion
Principle
D. Aufbau's Rule
97. A group of atoms can function as a ligand only when
A. it is a small molecule
B. it has an unshared electron pair
C. it is a negatively charged ion
D. it is positively charged ion
98. When potassium dichromate crystals are heated with conc. HCl ,
A. O_{2} is evolved
B. Chromyl chloride vapours are evolved
C. Cl_{2} is evolved
D. No reaction takes place
99. Aluminium is more reactive than Fe . But Al is less easily corroded than iron because
A. Al is noble metal
B. Fe forms both mono and divalent ions
C. Al forms a protective D. Fe undergoes oxide layer reaction easily with $\mathrm{H}_{2} \mathrm{O}$
100. The ratio of $\mathrm{C}_{\mathrm{v}} / \mathrm{C}_{\mathrm{p}}$ for inert gas is
A. 1.33
B. 1.66
C. 2.13
D. 1.99
101. The pH of blood is
A. less than 6 B
B. greater than 7 and less than 6
C. greater than 8 and less than 9
D. greater than 10
102. Sodium carbonate is manufactured by Solvay process. The recycled products are
A. CO_{2} and NH_{3}
B. CO_{2} and $\mathrm{NH}_{4} \mathrm{Cl}$
C. NaCl
D. CaCl_{2} and CaO
103. Among the following which is the weakest base?
A. NaOH
B. $\mathrm{Ca}(\mathrm{OH})_{2}$
C. KOH
D. $\mathrm{Zn}(\mathrm{OH}\}_{2}$
104. The set of quantum number not applicable for an electron in an atom is
A. $n=1, l=1, m=1, S=+1 / 2$
B. $\mathrm{n}=1, \mathrm{l}=0, \mathrm{~m}=0, \mathrm{~S}=+1 / 2$
C. $n=1, l=0, m=0, S=-1 / 2$
D. $\mathrm{n}=2, \mathrm{l}=0, \mathrm{~m}=0, \mathrm{~S}=+1 / 2$
105. The conversion of $A \rightarrow B$ follows second order kinetics, tripling the concentration of A will increase the rate of formation of B by a factor of
A. $1 / 4$
B. 2
C. $1 / 2$
D. 9
106. Amino group in the benzene group can be protected by
A. arylation
B. salfoniation
C. chlorination
D. acetylation
107. The light radiation with discrete quantities of energy is called
A. electron
B. photon
C. positron
D. meson
108. How many primary amines are possible for the formula $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$?
A. 1
B. 2
C. 3
D. 4
109. Base catalysed aldol condensation occurs with
A. propanaldehyde
B. benzaldehyde
C. 2, 2-dimethyl propionaldehyde
D. none of the above
110. A sample of chloroform before being used as an anaesthetic is tested by
A. Fehling's solution
B. ammonical cuprous chloride
C. silver nitrate solution
D. silver nitrate solution after boiling with alcoholic potassium hydroxide
111. 1-chlorobutane on reaction with alcoholic potash gives
A. 1-butene B. 1-
C. 2-butene D. 2-
butanol
butanol
112. The halogen which is most reactive in the halogenation of alkanes under sunlight is
A. chlorine
B. bromine
C. iodine
D. fluorine
113. The highest b.p. is expected for
A. iso octane
B. only ketone
C. n-octane
D. n-butane
114. The bond between carbon,atom (1) and carbon atom (2) in compound $\mathrm{N} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$ involves the hybrids as
A. sp^{3} and sp^{2}
B. sp^{3} and sp
C. sp and sp^{2}
D. sp and sp
115. If two compounds have the same empirical formula but different molecular formula, they must have
A. different percentage composition
B. different molecular weight
C. same viscosity
D. same vapour density
116. Optical isomerism is shown by
A. Butanol-1
B. Butanol-2
C. Butene-1
D. Butene-2
117. The ion that cannot be precipitated by both HCl and $\mathrm{H}_{2} \mathrm{~S}$ is
A. Pb^{2+}
B. Cu^{+}
C. Ag^{+}
D. Sn^{2+}
118. The aqueous solution of the following salts will be coloured in case of
A.
B. $\mathrm{LiNO}_{3} \quad$ C.
D. ArCl_{3}
119. The highest degree of paramagnetism per mole of the compound at $25^{\circ} \mathrm{C}$ will be shown by
A. $\mathrm{MnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{COCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{FeCl}_{3} .4 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
120. Bromine can be liberated from KBr solution by the action of
A. iodine solution
B. chlorine water
C. sodium chloride
D. potassium iodide
121. If A and B be any two sets, then $(A \cup B)^{\prime}$ is equal to
A. $\mathrm{A} \cap \mathrm{B}$
B. $\mathrm{A} \cup \mathrm{B}$
C. $\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
D. $A^{\prime} \cup B^{\prime}$
122. If $\mathrm{A}=\{1,2,3,4\}$ then which of the following are functions from A to itself?
A. $f_{4}=\{(x, y): x+y=5\}$
B. $f_{3}=\{(x, y): y<x\}$
C. $f_{2}=\{(x, y): x+y>4\}$
D. $f_{1}=\{(x, y): y=x+1\}$
123. The solution of $6+x-x^{2}>0$ is
A. $-1<x<2$
B. $-2<x<3$

1 - iz
D. none of the above
124. If $z=x+i y$ and \qquad , then $|\omega|=1$ implies that in the complex $\omega=$ plane,
A. z lies on the unit circle
B. z lies on the imaginary axis
C. z lies on the real axis
D. none of the above
125. The first term of a G.P., whose second term is 2 and sum to infinity is 8 , will be
A. 6
B. 3
C. 4
D. 1
126. Equation of circle having diameters $2 \mathrm{x}-3 \mathrm{y}$
$=5$ and $3 x-4 y=7$, and radius 8 is
A. $x^{2}+y^{2}-2 x+2 y-62$ B. $x^{2}+y^{2}+2 x+2 y-2$
$=0 \quad=0$
C. $x^{2}+y^{2}+2 x-2 y+1$
$62=0$
127. A and B are points in the plane such that $\mathrm{PA} / \mathrm{PB}=\mathrm{K}$ (constant) for all P on a circle. The value of K cannot be equal to
A. $-1 / 2$
B. $1 / 2$
C. -1
D. 1
128. If the centroid and circumcentre of a triangle are $(3,3)$ and $(6,2)$ respectively, then the orthocentre is
A. $(-3,5)$
B. $(-3,1)$
C. $(3,-1)$
D. $(9,5)$
129. If $\sin x+\cos x=1 / 5,0 \leq x \leq \pi$, then $\tan x$ is equal to
A. $-4 / 3$ or $-3 / 4$
B. $4 / 3$
C. $4 / 5$
D. none of the above
130. If r_{1}, r_{2}, r_{3} in a triangle be in H.P., then the sides are in
A. H.P.
B. APP.
C. G.P.
D. none of the above
131. $\cot \theta=\sin 2 \theta(\theta \neq n \pi$, n integer $)$ if θ equals
A. 45° and 90°
B. 45° and 60°
C. 90° only
D. 45°
132.

If a
$=(\mathrm{b}$

- c) \longrightarrow sin $=$
sec
θ,
then
bic
2
A. $\cos \theta$
B. $\cot \theta$
C. $\tan \theta$
D. $\sin \theta$

133. The average of n numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ is M. If x_{n} is replaced by x^{\prime}, then new average is

$$
\mathrm{M}-\mathrm{x}_{\mathrm{n}}+\mathrm{x}^{\prime}
$$

A.
n

n
4

B.
D. $M-x_{n}+x^{\prime}$
134. In an entrance test, there are multiple choice questions. There are four possible answers to each question of which one is correct. The probability that a student knows the answer to a question is 90%. If he gets the correct answer to a question, then the probability that he was guessing is
A. $1 / 9$
B. $36 / 37$
C. $1 / 37$
D. $47 / 40$
135. The value of $\tan \left[\cos ^{-1}(4 / 5)+\tan ^{-1}(2 / 3)\right]$
is $16 / 7$
B. $6 / 17$
C. $7 / 16$
D. none of the above
136.

Lt x - [x], where k is an integer, is equal to $\mathrm{x} \rightarrow \mathrm{k}$ -
A. -1
B. 1
C. 0
D. 2
$\tan \mathrm{x}[\log (\mathrm{x}-2)]$
137. The values of x where the function f \qquad is discontinuous are given
(x) $=$ by

$$
x^{2}-4 x+3
$$

A. $(-\infty, 2) \cup\{3, n \pi, n \geq 1\}$
B. $(-\infty, 2)$
C. $(-\infty, 2) \cup\{2 n \pi, \pi / 2, n=1\}$
D. none of the above $\mathbf{d}^{2} \mathbf{x}$
138.
If \mathbf{y}
$=x \longrightarrow$ is
$+\mathrm{e}^{\mathrm{x}}$,
then

$$
d y^{2}
$$

A. $\frac{1}{\left(1+e^{x}\right)^{2}}$
B. $-\frac{e^{x}}{\left(1+e^{x}\right)^{2}}$
e^{x}
C.-

$$
\left(1+e^{x}\right)^{3}
$$

D. e^{x}
139. At $x=5 \pi / 6, f(x)=2 \sin 3 x+3 \cos 3 x$ is
A. zero
B. maximum
A. zero

D. none of the above
140. If $\mathrm{a}<0$, the function ($\mathrm{e}^{\mathrm{ax}}+\mathrm{e}^{-\mathrm{ax}}$) is a strictly monotonically decreasing function for values of x is given by
A. $x<1$
B. $x>1$
C. $\mathrm{x}<0$
D. $\mathrm{x}>0$
141. $\left.\int[\sin (\log x)+\cos (\log x)] d x\right)$ is equal to
A. $\sin (\log x)+\cos (\log x)+c$
B. $\sin (\log x)+c$
C. $x \cos (\log x)+c$
142. $\int_{-1 / 2}^{1 / 2 \mid x} \pi / 2 x$ is
B. 1
C. $(\pi \sqrt{ } 2+\quad$ D. none of $4 \sqrt{ } 2-8) / \pi^{2}$ the above
143. Solútion of differential equation $x d y-y d x=0$ represents
A. parabola whose vertex is at origin
B. circle whose centre is at origin
C. a rectangular hyperbola
D. straight line passing through origin
144. If $h(x)=f(x)+f(-x)$, then $h(x)$ has got an extreme value at a point where $f^{\prime}(x)$ is
A. even function
B. odd function
C. zero
D. none of the above
145. If $x=1 / 3$, then the greatest term in the expansion of $(1+4 x)^{8}$ is
A. 3rd term
B. 6th term
C. 5th term
D. 4th term
146. Roots of $x^{2}+k=0, k<0$ are
A. real and equal
B. rational
C. real and distinct
D. equal
147. In a quadratic equation with leading coefficient 1 , a student reads the coefficient 16
of x strongly as 19 and obtains the roots as -15
and -4 . The correct roots are
A. 8,8
B. 6,10
C. $-6,-10 i$
D. $-8,-8$
148. The value of m for which the equation $x^{2}-m x^{2}+3 x-2=0$ has two roots equal in magnitude but opposite in sign is
A. $4 / 5$
B. $3 / 4$
C. $2 / 3$
D. $1 / 2$
149. If $1 /(b-a)+1 /(b-c)=1 / a+1 / c$, then a, b, c are in
A. H.P.
B. G.P.
C. A.P
D. none of the above
150. If every term in G.P. is positive and also every term in the sum of two proceeding terms, then the common ratio of the G.P. is
A. $(1-\sqrt{5}) / 2$
B. $(\sqrt{ } 5+1) / 2$
C. $(\sqrt{ } 5-1) / 2$
D. 1
151. If $y=-\left(x^{3}+x^{6} / 2+x^{9} / 3+\ldots . ..\right)$, then
A. $x^{3}=1-e^{y}$
B. $x^{3}=\log (1+y)$
C. $x^{3}=e^{y}$
D. $x^{3}=1+e^{y}$
152. Vinay, Manish, Rahul, and Sumit haye to give speeches in a class. The teacher can arrange the order of their presentation in
A. 12 ways
B. 24 ways
C. 4 ways
D. 256
ways
153. There are $n(>2)$ points in each of two parallel lines. Every point on one line is joined to every point on the other line by a line segment drawn within the lines. The number of points (between the lines), in which these segments intersect is
A. ${ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{X}^{\mathrm{n}} \mathrm{C}_{2}$
B. ${ }^{2 \mathrm{n}} \mathrm{C}_{2}-2\left({ }^{\mathrm{n}} \mathrm{C}_{2}\right)$
C. ${ }^{2 \mathrm{n}} \mathrm{C}_{2}-2\left({ }^{\mathrm{n}} \mathrm{C}_{1}\right)+2$
D. none of the above
154. The number of ways in which 7 persons can sit around a table so that all shall not have the same neighbours in any two arrangements is
A. 360
B. 720
C. 270
D. 180
155. The length of sub normal to the parabola $y^{2}=4 a x$ at any point is equal to
A. $a \sqrt{ } 2$
B. $2 \sqrt{ } 2 \mathrm{a}$
C. $\mathrm{a} / \sqrt{ } 2$
D. 2 a
156. The expansion of $(8-3 x)^{3 / 2}$ in terms of power of x is valid only if
A. $x>8 / 3$
B. $|x|<8 / 3$
C. $x<3 / 8$
D. $x<8 / 3$
157. If $y=-\left(x^{3} / 2+x^{3}-x^{4} / 4+\ldots \ldots\right)$, then x is
A. $e^{y}-1$
B. $\log (1+$
C. $\mathrm{e}^{\mathrm{y}}+1$
D. e^{y}
158. If a, b, c are in G.P., then $\log _{a} m, \log _{b} m, \log _{c} n$ are in
A. G.P.
B. H.P.
C. A.P.
D. none of the above
159. If A is a matrix of order 3×4, then each row of A has
A. 12 elements
B. 3 elements
C. 7 elements
D. 4 elements
A. $\left[\begin{array}{ll}0 & \mathrm{i} \\ \mathrm{i} & 0\end{array}\right]$
B. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
D. $\left[\begin{array}{lll}0 & \mathrm{i} & \\ \mathrm{i} & 0 & \end{array}\right]$
161. If α, β, γ are the roots of the equation $x^{2}+$
$p x+q=0$, then the value of the determinant
A. q
B. 0
C. p
D. $p^{2}-2 q$
162. If A, B, C are any three matrices, then $A^{\prime}+B^{\prime}+C^{\prime}$ is equal to
A. $A+B+C$
B. $(\mathrm{A}+\mathrm{B}+\mathrm{C})^{\prime}$
C. $-(\mathrm{A}+\mathrm{B}+\mathrm{C})$
D. a null matrix
163. If A is any matrix, then the product A.A, i.e., A^{2} is defined only when A is a matrix of order
A. $m>n$
B. $m=n$
C. $\mathrm{m}<\mathrm{n}$
D. $m \geq n$
$\overrightarrow{164}$. The area of the parallelogram of

are

 which
adjacent

 isA. $\sqrt{ } 2$
B. $1 / 2$
C. 2
D. 1
165. If the direction cosines of line are ($1 / \mathrm{c}, 1 / \mathrm{c}, 1 / \mathrm{c}$), then
A. $0<\mathrm{c}<1$
B. c >2
C. c >0
166. The sine of the angle between the straight line
the plane $2 x-2 y+z=5$ is

A. $10 /(6 \sqrt{ } 5)$
B. $4 /(5 \sqrt{ } 2)$
C. $\sqrt{ } 2 / 10$
D. $(2 \sqrt{ } 3) / 5$
167. Constant term in the expansion of $(x-1 / x)^{10}$ is
A. 152
B. -152
C. -252
D. 252
168. The latus rectum of the ellipse $5 x^{2}+9 y^{2}=45$ is
A. $5 / 3$
B. $10 / 3$
C. $(2 \sqrt{ } 5) / 3$
D. $\sqrt{5} / 3$
169. $i^{2}+i^{4}+i^{6}+$ \qquad $(2 n+1)$ terms $=$
A. -1
B. 1 C. -i D. i
170. If the sum of the series $2,5,8,11, \ldots \ldots$ is 60100 , then n is
A. 100
B. 200
C. 150
D. 250
171. Two of the lines represented by the equation $a y^{4}+b x y^{3}+c x^{2} y^{2}+d x^{3} y+e x^{4}=0$ will be perpendicular, then
A. $(b+d)(a d+b e)+(e-a)^{2}(a+c+e)=0$
B. $(b+d)(a d+b e)+(e+a)^{2}(a+c+e)=0$
C. $(b-d)(a d-b e)+(e-a)^{2}(a+c+e)=0$
D. $(b-d)(a d-b e)+(e+a)^{2}(a+c+e)=0$
172. The probability that an event A happens on trial of an experiment is 0.4 . Three independent trials of the experiment are formed. The probability that the event A happens at least once is
A. 0.936
B. 0.784
C. 0.904
D. 0.984
173. The numbers are selected at random from $1,2,3, \ldots .100$ and are multiplied, then the
probability correct to two places of decimals that the product thus obtained is divisible by 3 , is
A. 0.55
B. 0.44
C. 0.22
D. 0.33
174. If $\mathrm{p}^{2}+\mathrm{q}^{2}=1$ and $\mathrm{m}^{2}+\mathrm{n}^{2}=1$, then
A. $\mid \mathrm{p}_{\mathrm{m}}+\mathrm{q}_{\mathrm{n}}$ B. $\mid \mathrm{pm}_{\mathrm{m}}+\mathrm{q}_{\mathrm{n}}$ C. $\mid \mathrm{p}_{\mathrm{q}}+\mathrm{mn}$ D. $\mid \mathrm{p}_{\mathrm{q}}+$
$|\leq 0 \quad| \leq 1 \quad|>1 \quad \mathrm{mn}|<2$
175. In a football championship, there were played 153 matches. Every two team played one match with each other. The number of teams participating in the championship is
A. 9
B. 11
C. 13
D. 18
176. The solution of $|(x-1)+2|=1$ is
A. 1
B. 2
C. 5
177. The equation $\log _{e} x+\log _{e}(1+x)=0$ can be written as
A. $x^{2}+x-e=0$
B. $x^{2}+x-1=0$
C. $x^{2}+x+1=0$
D. $\mathrm{x}^{2}+\mathrm{xe}-\mathrm{e}=0$
178. Both the roots of the equation $(x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0$ are always
A. positive
B. negative
c. real
D. imaginary
179. The value of $\tan x / \tan 3 x$ whenever defined never lies between
A. $1 / 3$ and
B. $1 / 4$ and
C. 1/5 and
D. 5 and 6
3 4
5
180. Given $(\mathrm{a}+\mathrm{d})>(\mathrm{b}+\mathrm{c})$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real numbers, then
A. a, b, c, d are in A.P.
B. $1 / \mathrm{a}, 1 / \mathrm{b}, 1 / \mathrm{c}, 1 / \mathrm{d}$ are in A.P.
C. $(a+b),(b+c),(c+d),(a+d)$ are in A.P.
D. $1 /(a+b), 1 /(b+c), 1 /(c+d), 1 /(a+d)$ are in A.P.

