- 1	. The radius	$\alpha f \alpha$	curvature of	a enl	nerical	curface	ic	measured	neine
	. The faulus	OI (sui vatuic oi	aspi	icricar	Surracc	10	measurea	using

A. a spherometer

B. spectrometer

C. screw gauge

D. slide callipers

2. If the dimensions of length are expressed as G^{x} , C^{y} , h^{z} , where G, C, h are universal gravitational constant, speed of light and Plank's constant respectively, then

A.
$$x = 1/2$$
, $y = 1/2$

B.
$$x = 1/2$$
, $z = 1/2$

C.
$$y = 1/2$$
, $z = 3/2$

D.
$$y = +3/2$$
, $z = 1/2$

3. The dimensional formula of electric field strength is:

A.
$$MLT^2 I^1$$

B.
$$MLT^{-3}A^{-1}$$

C.
$$T^2A^{-1}$$

4. A man throws a ball in air in such a way that when the ball is in its maximum height he throws another ball. If the balls are thrown after the time difference of 1 sec, then what wilt be the height attained by them

5. If the velocity time graph of a body is a straight line sloping downwards, the body has

A acceleration

B. declaration

C. zero acceleration

D. constant acceleration

6. Which one of the following equations represents the motion of body with finite constant acceleration?

A.
$$y = at$$

$$B. y = at + bt^2$$

$$C. y = at + bt^2 + ct^3$$

D.
$$y = at + bt$$

7. What is the magnitude of the velocity of the body when it is projected horizontally from a point above the ground after 0.2 seconds?

A.
$$\sqrt{2} \text{ ms}^{-1}$$
 B. $2\sqrt{2} \text{ ms}^{-1}$ C. $3\sqrt{2} \text{ ms}^{-1}$ D. $4\sqrt{2} \text{ ms}^{-1}$

8. A string can withstand a tension of 25 N. What is the greatest speed at which a body of mass 1 kg can be whirled in a horizontal circle using 1 m length of the string?

9. An object tied to a piece of string is whirled in a vertical circle, at constant speed. The tention in the string is maximum at

A, A

D.D

10. The maximum force of friction that comes into play is called

A. limiting friction

B. kinetic friction

C. static friction

D. minimum friction

11. A body of mass 5 Kg is raised vertically to a height of 10 m by a force of 170 N. The final velocity of the body is

A. 15 ms⁻¹ B. 17 ms⁻¹ C. 20 ms⁻¹ D. 22 ms⁻¹

12. A cyclist moving at a speed of 17.64 km/h describes a circle of radius 9.8 m. If the cyclist is held in balance, the co-efficient of friction between the tyre and the ground is				
A. 0.25	B. 0.29	C. 0.36	D. 0.35	
13. Two bodies with respective momenta,	masses m_1 and m_2 have eathen $P_1 = P_2$ is		f P_1 and P_2 are their	
A. $m_1 : m_2$	B. $m_2 : m_1$	C. $m_1^2 : m_2^2$	D. $\sqrt{m_1} : \sqrt{m_2}$	
14. In elastic collision	1,		20 (3)	
A. only energy is con		B. only momentum is	conserved	
•••	omentum is conserved particle whose kinetic	D. none of these	40 90	
energy is equal to the	-	4 6 7		
A. (1/2) <i>C</i> B. <i>C</i>	C. $\sqrt{3/3}$ D. $\sqrt{3}$ C	20.5	100	
16. The propeller of a	ship makes 350 rev. whi	ile its speed increases fro	om 200 rpm to 500 rpm.	
Then the time taken f	=	/ \ /		
A. 1 min	B. 1.2 minute	C. 5.3 seconds	D. 53 seconds	
17. The K.E. needed	to project a body from the	e earth's surface to infin	ity is	
A. mgR	B. 2 mgR	C. 1/2 (<i>mgR</i>)	D. 1/4 (<i>mgR</i>)	
18. The distance of tw	vo planets from the sun a	re 10^{13} and 10^{12} meters r	respectively. The ratio of	
time period of these t		W 18	1 7	
A. $\sqrt{10}$	B. $1/\sqrt{10}$	C. 100	D. $10\sqrt{10}$	
19. Poisson ratio is th	e ratio of			
A. the linear strain to	A	B. the lateral strain to	the linear strain	
C. the linear stress to		D. the lateral stress to	the linear stress	
100	M are of the same materia			
	h, but the diameter of <i>L</i> is hing force applied to <i>L</i> is			
four times that of M .				
elongation of L to that				
A. 1:4 B. 4:1	C. 1:1 D. 2:1			
21. Which of the subs	stance breaks just beyond	the elastic limit?		
A. Elastic	B. Malleable	C. Brittle	D. Ductile	
22 4	<i>C</i> 1	144 . 1 . 1 . 1	11111 1 1 1 1	
	6 kg is attached to a string	_	s whirled in a horizontal am velocity of revolution	
	ne stone without breaking		ani velocity of fevolution	
A. 12 ms ⁻¹	and the state of t	B. 14 ms ⁻¹		

C. 16 ms ⁻¹		D. 20 ms ⁻¹	
	0.1 m ³ of air at 76 cm of e resultant air pressure is		ed to an evacuated vessel
A. 20 cm of Hg	B. 30 cm of Hg		D. 50 cm of Hg
			and the same volume <i>V</i> slume <i>V</i> , the pressure of
A. P 25. A solid ball of meta inside it. If the ball is he cavity will	B. 2 <i>P</i> l has spherical cavity eated, the volume of the	C. P/2	D. 4P
A. increase B. decrease	C. remain D. disappear	25 5	10
26. If the law of heat coelectrical resistance is	onduction is written in th	e form of Ohm's law, the	en the quantity similar to
A. $A/d\lambda$	B. Ad/λ	C. Aλ/d	D. d/Aλ
27. The work done from A. 1045 ergs	n 250 cals of heat is B. 1045 joules	C. 1045 watt	D. 1045 N
28. The time taken by a the maximum displacer	particle executing S.H.I	M of period T to move the	ne mean position to half
A. $T/2$ 29. Let g be the accelerate arth's surface and K be the earth. Suppose the e by 2%, then	B. T/4 ation due to gravity at the rotational K.E. of earth's radius decreases	C. T/8	D. <i>T</i> /12
	and <i>K</i> increases by 2% D. decreases by 4% and	d	
	n is hanging vertically by tically, its total energy is		e constant K. If the mass
A. maximum at the extr C. minimum at the equi	reme position	B. maximum at the equ D. same at all position	ilibrium
100	n CO ₂ is less than in hyd	rogen because B. CO ₂ is a compound	and hydrogen is an
A. CO₂ is heavier than IC. CO₂ is more soluble		element D. CO ₂ can be more ea	

32. The velocity of sound in air at room temperature is 110 m/sec. The length of the wave						
coming from a vibrating fork at frequency 275 is						
A. 0.4 m	B. 100 m	C. 825 m	D. 1375 m			
-	which velocity of sound					
A. 435°C	B. 694°C	C. 781°C	D. 819°C			
34. Static electricity is p	produced by					
A. induction	B. friction		E 47			
C. both induction and friction	D. none of the above		20 ()			
35. Surface charge dens	sity on a pear shaped con	ductor is	E. A. C. S. B.			
A. maximum in the mid	ldle position	B. maximum near the ta	pering end			
C. maximum near the b	road end	D. equal throughout the	surface			
		4 1 6	14			
36. A given charge situa	ated at a certain distance	from an electric dipole i	n the end on position			
experiences a force <i>F</i> . I be	f the distance of the char	ge is doubled, the force	acting on the charge will			
A. 2F	B. <i>F</i> /2	C. F/4	D. F/8			
37. A piece of fuse wire melts when the current is 5 A. The energy produced then is 1 J/s. The resistance of the fuse in ohm is						
A. 0.04	B. 0.1	C. 0.5	D. 10			
	4.6	2771				
38. The gravitational fo $F = (m_1 m_2)/r^2$ Then con-	rce between two point m	casses m_1 and m_2 at separ	ration r is given by			
A. depends on systems		B. depends on medium	hetween masses only			
C. depends of both mas	7.4	D. none of these	between masses omy			
	nd another of germaniun					
	emperature to 80 K. The	1				
resistance of	imperature to oo ix. The					
A. each of them	B. each of them					
increases	decreases					
	D. germanium increase	S				
germanium decreases	-	S				
	ouple, the temperature of	the cold junction is 20°C	while the neutral			
temperature is 27°C. W	hat will be the temperature		e, while the neutral			
A. 420°C	B. 425°C	C. 520°C	D. 525°C			
41 When different parts of a metal are kept at different temperature and current is passed through						
	l or absorbed. The effect					
A. Peltier effect	B. Seebeck effect	C. Thompson effect	D. Joule effect			
42. A storage battery is to be charged from a d.c. supply which terminal of the battery be						
connected to the positive side of the line						
A. positive B. negative						

C. both positive and ne	•	D. first negative and after	the lapse of 5 minutes
43 The force between		oositive ying currents in the same	direction is a
A. force of attraction	two paramer whee earl	B. force of repulsion	direction is a
C. no resultant force be	etween the wires		ng perpendicular to the
		flow of wires	4.5
44. The motion of an el			
A. only an electric field C. both magnetic and		eid	E 17
electric field	D. none of the above		40 700
			100
45. An ammeter is con	nected in series with a	2V circuit containing a 2	V battery when the switch
is closed, the ammeter	shows high deflection a	and comes to zero. The c	ircuit may contain a
A. resistance of 20Ω	B. fuse	C. diode	D. triode
		55.4	10
46. Ferromagnetic subs			3 1 TV
A. very high permeabil	•	B. low permeability b	ut high susceptibility
C. high permeability ar	id low susceptibility	D. none of these	1.0
47. The permeability of	f the paramagnetic subs	stance is	
+7. The permeability of	t the paramagnetic subs	1./	D. small but more than
A. very large	B. very small	C. negative	1
48. When a material is	subjected to a small fie	eld	i,
H, the intensity of mag			
to	134		
A. \sqrt{H} B. H	C. H^2 D. $1/\sqrt{H}$	11	
	1000	7.1	
49. In a capacitance cir	4 . 4	,	1
Α. ω <i>C</i>	B. 1/ω <i>C</i>	C. $1/\sqrt{\omega} C$	$D \sqrt{\omega} \times C$
50 To 1 - 1 - 1		f :- :- 1- 1 1 1 6	
	induction, the induced	e.m.f. is independent of	
A. change of fluxC. number of lines of fe		D. resistance of the ce	alle
C. number of files of t	bicc	D. resistance of the ce	2115
51. A coil of area A is l	kept perpendicular to a	magnetic field B. If coil	is rotated by 180°, then
change in the flux will		S	,
A. BA	B. zero	C. 2 <i>BA</i>	D. 3 <i>BA</i>
52. The displacement c	urrent flows in the diel	lectric of a capacitor whe	n the P.D. across its plates
A. is increasing with time		B. is not decreasing w	vith time
C. has assured a consta		D. becomes zero	
53. Electromagnetic wa		- a4	
A. are longitudinal	B. travel in free space	e ai	
C. are produced by	D. travel with the san	ne	
waves	the speed of light		
C. are produced by	D. travel with the san	ue	

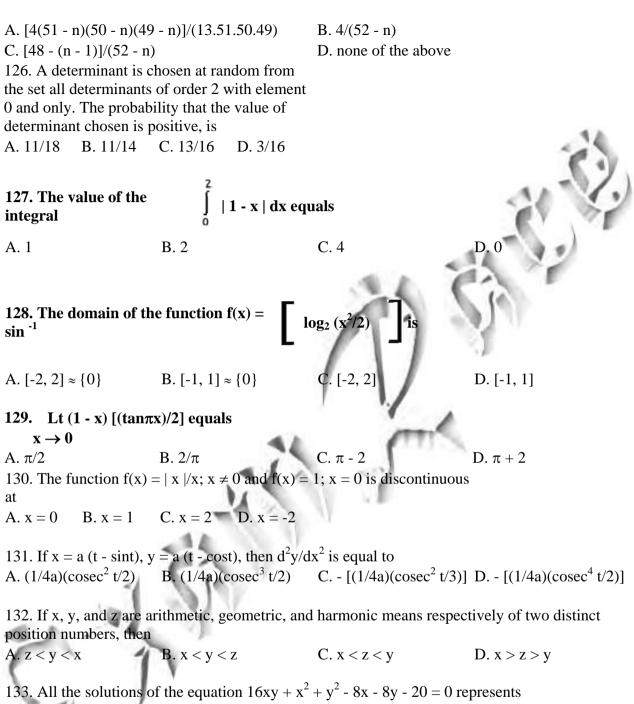
charges moving with uniform velocity	speed in all media		
54. The frequency of vi	sible light is of the order	of	
A. 10^8Hz	B. 10 ¹⁸ Hz	C. 10^{15} Hz	D. 10^{12} Hz
55. A concave mirror of distance of the object fr	f focal length 15cm form om the mirror is	s an image at a distance	of 40 cm from it. The
A. 10 cm	B. 20 cm	C. 24 cm	D. 30 cm
glass. In a normal pair of	e conveniently short by not binoculars, the number	of prism is	100
A. 1	B. 2	C. 4	D. 5
of incidence is	num deviation. The angle	23 8	
A. 0° B. 45°	C. 60° D. 75°	///	·.)
	s having velocities in the o of deflection produced		ed separately to identical
A. 4:1	B. 1:2	C. 1:4	D. 2:1
	44	ALL S	
59. The ray used for det	termining the crystal stru	cture of solid is	
A. α -ray	B. β -ray	C. γ -ray	D. X-ray
60. For the structural an	alysis of crystals X-ray a	are used because	
A. X-rays have waveler	ngth of the order of the in	nter-atomic spacing	
B. X-rays are highly per	netrating radiation		
C. wavelength of X-ray	s is of order of nuclear si	ize	
D. X-rays are coherent	radiation		
de la contra			
61. The ratio of the mol of 1 M Cd (NO ₃) ₂ and 0	ar amounts of H ₂ S neede 0.5 M CuSO ₄ is	ed to precipitate the meta	al ions from 20 ml each
A. 2:1	B. 1:1	C. 1:2	D. indefinite
62. Among the following	ng elements, which one h	as the highest value of f	irst ionization potential?
A. Argon	B. Barium	C. Cesium	D. Oxygen
63. Which of the follow	ring concepts best explain	ns that o-nitrophenol is r	• 6
nitrophenol? A. Resonance	B. Conjugation	C. Hydrogen binding	D. Covalent bonding
64. Which of the follow	5 0	<i>, , , , , , , , , , , , , , , , , , , </i>	-
	nerally have low m.p.and	l b.p.	
	is a non-polar molecule	· - · r -	www.examrace

C. Anhydrous AlCl ₃ is a covalent substance D. A molecule represents a more stable state as compared to individual atoms							
65. The chemical species shell is	65. The chemical species having same number of electrons in the outermost and penultimate shell is						
A. Al ³⁺	B. O ²⁻	C. Na ⁺	D. Cl				
B. burning of coalC. rusting of iron in moD. conversion of monoco		c sulphur					
_	l ₂ is dissolved in water t	o have 10^6 g of solution.	The concentration of				
solution is A. 5M	B. 5gmL ⁻¹	C. 2.5 ppm	D. 5 ppm				
72. The unit of electrocityA. coulomb/gram73. Adsorption increaseA. temperature remains constantC. temperature decreases	B. gm-ampere s when	C. gm./coulomb	D. gm-ampere ⁻¹				
74. The number of hour	rs required for a current	of 3.0 A to decompose e	lectrically 18 g of water				
is A. 12 hours	B. 24 hours	C. 6 hours	D. 18 hours				
75. The number of electrorying 10 -16 A, is	trons per second, which	pass through a cross sec	tion of a copper wire				
A. 16 x 10 ⁻² e/s	B. 1.6 x 10 ⁻³	C. 60 e/s	D. 625 e/s www.examrace.co				

76. 20 ml of HCl having acid is	g certain normality neutr	alizes exactly 1.0 g CaC	O ₃ . The normality of
A. 0.1 N	B. 1.0 N	C. 0.5 N	D. 0.01 N
77. The alkali metal use	ed in photoelectric cell is		
A. Cs	B. Fr	C. K	D. Rb
78. Calcium is extracted	d from		83
A. fused CaSO ₄	B. fused Ca ₃ (PO ₄) ₃	C. fused CaCl ₂	D. aqueous CaCl ₂ solution
79. SbCl ₃ upon hydroly	sis yields		-0.
A. $Sb(OH)_3$	B. SbO ⁺	C. Sb ⁺³	D. None of the above
80. Which of the follow monomer molecule?	ring trioxides can exist as	1.40	
A. SO ₃ in B. TeO ₃	C. SeO ₃ in D. SO ₃ in	NO 21 2	197
gaseous	all states solid state		
state 81. Pure chlorine is obta	ained	/ \ /	· P
A. by heating PtCl ₄	ameu	/ \/	
•	of NaCl and MnO ₂ with	conc. H ₂ SO ₄	
C. by heating MnO ₂ wit			
D. by treating bleaching	4 4	PITTIS.	
82 Which of the follow	ring gases is used in very	low temperature therm	ometers?
A. N_2	B. H ₂	C. Ne	D. He
	40.00	1	
83. Number of nucleons	s in D ₂ molecule is	G 2	D 4
A. 4	Bil	C. 2	D. 3
84. There is no s-s bond	Lin		
A. $S_2O_7^{2-}$	B. $S_2O_3^{2-}$	C. $S_2O_4^{2-}$	D. $S_2O_5^{2-}$
85. The ratio of C_p/C_v for	321	_ ,	- *
A. 1.66	B. 1.33	C. 1.99	D. 2.13
86. Electrolytic reduction	V	0.1.55	D. 2.13
extraction of			
A. highly	B. transition metals		
electropositive elements	S		
C. noble metals	D. highly		
101	electronegative elements		
87. The metal that is ex	tracted from sea water is	.	
A. Mg	B. Au	C. Ca	D. Fe

88. The compound have	ing blue colour is		
A. HgSO ₄	B. PbSO ₄	C. CuSO ₄ .5H ₂ O	D. CuSO ₄
89. Which of the follow A. Na ₂ CO ₃ + K ₂ CO ₃	ving is known as 'Wol-fr B. FeWO ₄	ramite'? C. SnO ₂	D. 98% pure Zinc
A. first decreases till th B. decreases regularly i	on series, the oxidation seemiddle of period and the moving from left to right middle of period and the correct	nen increases ght	
91. Which of the follow	ving properties of graphic	te and diamond are ident	
A. Density	B. Crystal structure	C. Atomic weight	D. Electrical conductivity
92. Which of the follow polymer? A. PAN B. PTFE	C. D. Buna-S Polythene	1	
93. The reagent which	forms crystalline osazon	e derivative when reacted	d with glucose is
A. Hydroxylamine	B. Benedict solution	C. Fehling solution	D. Phenylhydrazine
94. To which class of dA. Phthalein dyes95. Peroxo linkage is properties.	yes does phenolphthalein B. Triphenyl methane dyes	n belong? C. Nitro dyes	D. Azo dyes
A. $H_2S_2O_8$	B. H ₂ SO ₃	C. $H_2S_2O_7$	D. H ₂ SO ₄
96. Tautomerism is exh	aibited by		
A. RCH ₂ NO ₂	B. R ₃ CNO ₂	C. (CH ₃) ₂ NH	D. (CH ₃) ₃ CNO
97. Latest technique for A. chromatography	r purification, isolation a B. sublimation	nd separation of organic C. crystallization	substances is D. distillation
A. racemic mixture is for C. symmetry of the moles 99. In order to convert a chlorobenzene, the reagon	lecule is destroyed aniline into	nced with red P and HI b B. spatial arrangement D. chirality of the mole	is changed
100 Which of the follo	wing alcohol on dehydra	ation with cone H-SO: w	vill vield 2-butene?

100. Which of the following alcohol on dehydration with conc. H₂SO₄ will yield 2-butene?


A. 2-methyl-2-propanol B. 2-methyl-2-butanol C. 2-propanol

D. Sec. Butyl alcohekamrace.com

-		C ₂ Cl ₃ OH. It reduces Fehling be obtained by the action	C
A. Chloral	B. Chloroform	C. Methyl chloride	D. Monochloroacetic acid
102 Which of the follo	wing will yield Benzald	limine hydrochloride?	100
A. benzonitrile and SnO		B. nitrobenzene and Sr	Cl ₂ /HCl
C. benzene and hydrazi		D. hydrazine and HCl	A
•		-	OV VIE
of the following produc		h with the suspension of	bleaching powder. Which
A. Propene	B. Ethanol	C. Isopropyl chloride	D. Trichloromethane
104 Which of the follo	wing compounds is leas	t basic?	
A. $C_6H_5NH_2$	B. C ₂ H ₅ NH ₂	C. CH ₃ NH ₂	D. NH3
105. Iodine dissolves in		C. C1131N112	D. 11113
formation of	KI solution due to the		Y.0
	CI. DI.	/ / /	
A. I ⁺ B. I ⁻	C. I_2 D. I_3	/ //	
106. Hydrogen sulphide	e exhibits	1./	
A. acidic properties	B. basic properties	C. oxidising properties	D. none of the above
	44	PTT S	
107. White Phosphorus	reacts with caustic soda	a. The products are pH_3 a	and NaH ₂ PO ₂ . This
reaction is an example	of Name of		
A. oxidation	B. reduction	C. oxidation and reduction	D. neutralisation
108. Ammonia solution	dissolves fairly in		
A. Hg_2Cl_2	B. PbCl ₂	C. $Cu(OH)_2$	D. AgI
- 1	10		
109. Amongst the triha	lides of nitrogen, which	one is the least basic?	
A. NF ₃	B. NCl ₃	C. NBr ₃	D. NI_3
110. Among the variou	a allotropes of carbon		
		C lamp blook is the	
A. diamond is the hardest	B. graphite is the hardest	C. lamp black is the hardest	D. coke is the hardest
naruest	naruest	naruest	
111 Popo chargool is u	sed for decolourising su	igar bagaiga it	
	_	•	notton
A. reduces colouring m		B. oxidises colouring n	nauer
C. absorbs colouring m		D. none of the above	
112. Tin (II) chloride is			
A. mordant	C. D. none of	f	
in dying B. catalyst	oxidising agent the above		
	450111		

113. Inert pair effect is	most prominent in					
A. aluminium	B. boron	C. gallium	D. thallium			
114. In the alumino thermite process, aluminium acts as						
A. an oxidising agent	B. a flux	C. a reducing agent	D. a solder			
115. The correct structu	are of mercurous ion is		-24			
A. Hg ⁺	B. Hg ²⁺	C. Hg ₂ ⁺	D. Hg ₂ ²⁺			
116. Which one of the	following is purely ionic	?	40 30			
A. Sodium chloride	B. Beryllium chloride	C. Lithium chloride	D. Carbon tetrachloride			
	n heating gives a colourles passed through aqueous The compound A is					
A. NaHCO ₃	B. Na ₂ CO ₃	C. Ca(HCO ₃) ₂	D. CaCO ₃			
118. A solution of sodiu			-1			
	electrodes. The products					
at the cathode and anod	-	/ //				
A. H_2 , O_2 B. O_2 , H_2	$C. O_2, Na D. O_2, SO_2$	1/				
110 The metals occurr	ing in the form of their co	omnound in the earth's o	rust are called			
A. matters	B. minerals	C. alloys	D. gangue			
71. matters	D. Innicials	C. diloys	D. gungue			
120. A commercial sam	nple of hydrogen peroxid	e is labelled as 10 volum	ne. Its percentage			
strength is nearly		1	1 0			
A. 1%	B. 3%	C. 10%	D. 90%			
	242					
101 If (1\n D . I	$\mathbf{p} = (\mathbf{p} - 2)$) 1	D + D - :-			
	$P_1 + P_2 x + P_2 x^2 + \dots + F_n$					
A. $2^{\alpha} \cos n\pi/4$	B. $2^{n/2} \cos n\pi/4$	C. $2^{n/2} \sin \pi/4$	D. $2^n \sin \pi/4$			
122 If a b a and y are	real numbers, then $x^2 + x^2 + y^2 = x^2 + y^2 + y^2 = x^2 + y^2 + y^2 = x^2 + y^2 + y^2 = x^2 + y^2 + y^2$	Oby to will be positive i	f			
A. $b^2 > c$	B. $b^2 < c$	$C. b^2 > 4c$	D. $b^2 < 4c$			
A. 0 > C	D. 0 < C	C. 0 > 4C	D. 0 < 4C			
123. The one of the values of $(-i)^{1/3}$ is						
	B. $(-1/2)(\sqrt{3} + i)$	$C + (1/2)(\sqrt{3} + i)$	D. none of the above			
71. (1/2)(13 1)	D. (1/2)(1/3 + 1)	C. ± (1/2)(\(\frac{1}{2}\)(\(\frac{1}{2}\))	b. Holle of the above			
124. Let $A = R \approx \{m\}$ and $B = R \approx \{n\}$, where R is a set of real numbers. Let $f(x) = (x - n)/(x - m)$, then f is (where m, n are any integers)						
A. one-one onto	B. many one onto	C. one-one into	D. many one into			
			-			

125. Cards are dealt one by one from a well shuffled pack until an ace appears. The probability that exactly n cards are dealt with before the first ace appears is

A. a straight line B. pair of straight lines C. a circle D. a parabola

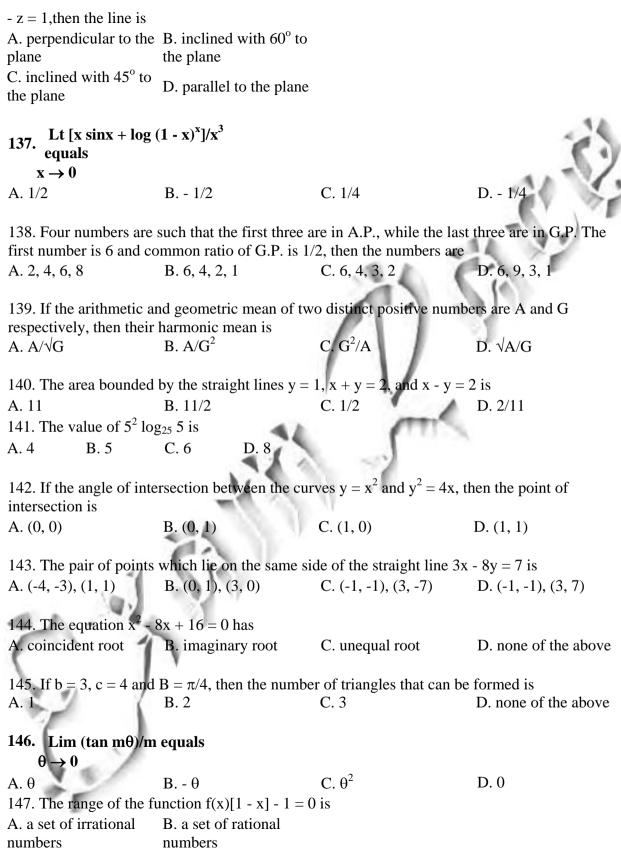
134. The solution set of an inequality 5 - 15y > 125, $y \in R$ is

A. $\{y \mid y \in R\}$

B. $\{y \mid y > 6\}$ C. $\{y \mid y < -8\}$ D. $\{y \mid y \in 8 \& y \in 9\}$

135. Unit vector in the xy-plane that makes an angle of 45° with the vector i + j and an angle of 60° with the vector 3i - 4j is

A. i


B. 2i

C. $\sqrt{2}i$

D. none of the above

136. Given the line (x + 3)/2 = (y - 4)/3 = (z + 5)/2 and the plane 4x - 2y

www.examrace.com

C. a set of real numbers D. none of the above

148. If a, b, c are in A.P., then

A.
$$1/(a - b) = 1/(b - c)$$
 B. $(a - b)/(b - c) = 2$ C. $(a - c)/2 = b$

B.
$$(a - b)/(b - c) = 2$$

C.
$$(a - c)/2 = b$$

D.
$$b + c = 2a$$

149. The sum of all numbers greater than 1000 formed by using the digits 1, 3, 5, 7, no digit repeated in any number is

A. 106656

B. 101276

C. 82171

D. 81273

150. The vertices of a triangle are represented by the complex numbers 4 - 2i, -1 + 4i, and 6then the complex number representing the centroid of a triangle is

A. 3 + i

B. 3 - i

C. 9 + i

D. 9 - i

151. $\sin (\pi + \theta) \sin (\pi - \theta) \csc^2 \theta$ is equal to

A. $\sin \theta$

B. $\cos \theta$

C. 1

D.(-1)

152. In a triangle ABC, $[(b^2 - c^2)/a]\cos A + [(c^2 - b^2)/a]\cos B + [(a^2 - b^2)/a]\cos C$ is equal to

A. abc

B. 1/abc

C. $a^2b^2c^2$

D. 0

153. If ex-radii r₁, r₂, r₃ of a triangle ABC are in H.P., then the sides of the triangle are in

A. A.P.

B. G.P.

C. H.P.

D. none of the above

154. The vertices of a triangle are A(6, 4), B(4, -3) and C(-2, 3), which one of the following is true for triangle ABC?

A. an isosceles triangle

B. an equilateral triangle

C. a right angled triangle

D. none of the above

155. The length of tangent from (5, 1) to the circle $x^2 + y^2 - 6x + 4y + 3 = 0$ is

A. 7

B. 14

C. 28

D. 36

4i + 3j - 2k, then the projection of b on a i + 2j +156. If a =

A. $2/\sqrt{29}$

B. $5/\sqrt{29}$

C. $3/\sqrt{29}$

D. 2

157. Which one is true?

A.
$$P(A/B) = P(A) +$$

B.
$$P(A/B) = P(A)$$
 -

$$C. P(A/B) =$$

D.
$$P(A/B) = P(A) -$$

P(AB)

P(B)

[P(AB)]/P(B)

P(B/A)

158. If $y = (1/2)[\log (\tan x)]$, then the value of dy/dx at $x = \pi/4$ is

A. 1

B. 0

C. -1

 $D. \infty$

159. If $y = (tanx + secx)^x$, then dy/dx is equal to

A. x secx B. y secx C. m secx D. mxy

www.examrace.com

160. The equation $2x^2$	+3x + 1 = 0 has		
A. rational root	B. irrational root	C. equal root	D. none of the above
161. A bag contains 6 white ball is	red, 5 green, and 7 white	e balls. The probability o	f choosing a red or a
A. 1/3	B. 11/13	C. 13/18	D. 3/8
$162. \int (x+2)/(x+4) dx$	lx is equal to		10 7/10
A. $1/2[\tan^{-1}(x - 2/x)]$	$+$ B. $tan^{-1}x + c$	C. $1/2[\tan^{-1}(2/x)] + c$	D. none of the above
163. The length interc	epted on the line $3x + 4y$	x + 1 = 0 by the circle (x	$(-1)^2 + (y-4)^2 = 25$ is
A. 3	B. 4	C. 5	D. 6
164. The period of the	function $\cos [(3/5)\alpha]$ - s	in [(2/7)α] is	100
Α. 7π	Β. 10π	C. 70π	D. 3π
165. The minimum va	lue of x ^x is attained when	n x is equal to	
A e	B. + e	$\mathbb{C}. e^2$	D. 1/e
166. If a, b, c and u, v,	, w are complex numbers	representing the vertices	S
of two triangles such t	hat $c = (1 - r)a + rb$ and v	v = (1 - r)u + rv, where r	
is a complex number,	then the two triangles are		
A. similar B.	C. equal in D. equal	St. 772	
congruent	area bases	11	
_	and the second s	dius and circum-radius re	espectively, then (a cos A
$+ b \cos B + c \cos C$)/(a	Acres of the contract of the c	-· - 2 ·	_ 2_
A. r/R	B. R/r	C. R^2/r	D. r^2/R
168. $\int [(x + \sin x)/(1 + \sin x)]$	cosx)] dx is equal to		
A. $x \tan(x/2)$	B. $x \tan(x/2) + c$	$C. \log (1 + \cos x) + c$	D. $x \log(\cos x) + c$
169. The differential c	oefficient of f [log(x)] w	then $f(x) \log x$ is	
A. x log x	B. $x/(\log x)$	C. $1/(x \log x)$	D. $(\log x)/x$
170. If $x = 9 \sin 2\theta$ (1)	$+\cos 2\theta$) and $y = b\cos 2\theta$	2θ (1 - cos 2θ), then the	value of dy/dx is
A. (b tan θ)/a	B. $a/(b \tan \theta)$	C. $(a \tan \theta)/b$	D. ab tan θ
171. The number of so	olution of the equation (ta	an x + sec x = 2 cos x) ly	ing in the interval $(0, 2\pi)$
is		-	
A. 0	B. 1	C. 2	D. 3
	gles in the first quadrant s	such that $\tan \theta = 1/7$ and	
$\sin \phi = 1/\sqrt{10}$, then			www.examrace.com

A.
$$\theta + 2\phi = B$$
. $\theta + 2\phi = C$. $\theta + 2\phi = D$. $\theta + 2\phi = 90^{\circ}$ 60° 30° 45°

173. If a cos $2\theta + b \sin 2\theta = c$ has a and b as its solution, then the value of $\tan \alpha + \tan \beta$ is

A.
$$(c + a)/2b$$

B.
$$2b/(c + a)$$

C.
$$(c - a)/2b$$

D.
$$b/(c + a)$$

174. The perimeter of a certain sector of a circle is equal to the length of the arc of a semi-circle having the same radius, the angle of the sector is

175. The value of $\tan^{-1}x + \cot^{-1}x$ is

A.
$$\pi/3$$

C.
$$2\pi/3$$

D.
$$2\pi$$

176. If a circle cuts a rectangular hyperbola $xy = c^2$ in A, B, C, D and the parameters of these four points be t_1 , t_2 , t_3 and t_4 respectively, then

A.
$$t_1 t_2 = t_3 t_4$$

B.
$$t_1 t_2 t_3 t_4 = 1$$

C.
$$t_1 = t_2$$

D.
$$t_3 = t_4$$

177. If the normal to $y^2 = 12x$ at (3, 6) meets the parabola again in (27, -8) and the circle on the normal chord as diameter is

A.
$$x^2 + y^2 + 30x + 12y - B$$
. $x^2 + y^2 + 30x + 12y$

$$27 = 0$$

$$+27 = 0$$

$$27 = 0$$

 $C. x^{2} + y^{2} - 30x - 12y - D. x^{2} + y^{2} - 30x + 12y - 27 = 0$
 $27 = 0$

178. If the normal any point P on the ellipse cuts the major and the minor axes in G and g respectively and C be the centre of the ellipse, then

A.
$$a^2 (CG)^2 + b^2 (Cg)^2 = (a^2 - b^2)^2$$

B.
$$a^2 (CG)^2 - b^2 (Cg)^2 = (a^2 - b^2)^2$$

C.
$$a^2 (CG)^2 - b^2 (Cg)^2 = (a^2 + b^2)^2$$

179. The point of intersection of the tangent at the end of the latus rectum of the parabola $y^2 = 4x$ is

A.
$$(-1, 1)$$

180. If a, b, c are distinct positive numbers, then the expression (b + c - a)(c + a - b)(a + b - c)abc is

A. positive

B. negative

C. both negative and positive

D. none of the above