FACULTY RECRUITMENT TEST

CATEGORY-C
Formal School Education/XI, XII MATHEMATICS

PAPER - A

Time: 60 Minutes.
Maximum Marks: 40

| Name:... | | |
| :--- | :--- | :--- | :--- |
| Subject:.. | Marks: | |

Instructions:

Attempt all questions.
(6) This question paper has two Parts, I and II. Each question of Part I carries 2 marks and of Part II carries 5 marks.
(o) Calculators and log tables are not permitted

PART-I

1. Prove that there exists no complex number z such that $|z|<\frac{1}{3}$ and $\sum_{r=1}^{n} a_{r} z^{r}=1$ where $\left|a_{r}\right|<2$.
2. Find the equation of the largest circle with centre $(1,0)$ that can be inscribed in the ellipse $x^{2}+4 y^{2}=$ 16.
3. Consider a branch of the hyperbola, $x^{2}-2 y^{2}-2 \sqrt{2} x-4 \sqrt{2} y-6=0$ with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A, then find the area of the triangle $A B C$.
4. Find the area bounded by the curves $x^{2}=y, x^{2}=-y$ and $y^{2}=4 x-3$.
5. Find the value of $\operatorname{Lim}_{x \rightarrow \frac{\pi}{4}} \frac{\int_{2}^{\sec ^{2} x} f(t) d t}{x^{2}-\frac{\pi^{2}}{16}}$.
6. Let $I=\int \frac{e^{x}}{e^{4 x}+e^{2 x}+1} d x, J=\int \frac{e^{-x}}{e^{-4 x}+e^{-2 x}+1} d x$. Then, find the value of $J-I$.

FACREC-PAPER-A MA-2

7. If a, b, c are in A.P., prove that $\cos A \cot A / 2, \cos B . \cot B / 2, \cos C \cot C / 2$ are in A.P.
8. Let $A B C$ and $A B C^{\prime}$ be two non-congruent triangles with sides $A B=4, A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is
9. Let α and β be the roots of $x^{2}-6 x-2=0$, with $\alpha>\beta$. If $a_{n}=\alpha^{n}-\beta^{n}$ for $n \geq 1$, then find the value of $\frac{\mathrm{a}_{10}-2 \mathrm{a}_{8}}{2 \mathrm{a}_{9}}$.
10. Let $\vec{a}=-\hat{i}-\hat{k}, \vec{b}=-\hat{i}+\hat{j}$ and $\vec{c}=\hat{i}+2 \hat{j}+3 \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$, then find the value of $\vec{r} \cdot \vec{b}$.

PART-II

1. If $A=\left[\begin{array}{lll}a & 1 & 0 \\ 1 & b & d \\ 1 & b & c\end{array}\right], B=\left[\begin{array}{lll}a & 1 & 1 \\ 0 & d & c \\ f & g & h\end{array}\right], U=\left[\begin{array}{l}f \\ g \\ h\end{array}\right], V=\left[\begin{array}{c}a^{2} \\ 0 \\ 0\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $A X=U$ has infinitely many solution.

Prove that $B X=V$ has no unique solution, also prove that if afd $\neq 0$, then $B X=V$ has no solution.
2. Let $g(x)=\ln f(x)$ where $f(x)$ is a twice differentiable positive function on $(0, \infty)$ such that $f(x+1)=x f(x)$. Then for $N=1,2,3$ find $g "\left(N+\frac{1}{2}\right)-g "\left(\frac{1}{2}\right)$.
3. Using permutation or otherwise, prove that $\frac{\left(n^{2}\right)!}{(n!)^{n}}$ is an integer, where n is a positive integer.
4. Let $y^{\prime}(x)+y(x) g^{\prime}(x)=g(x) g^{\prime}(x), y(0)=0, x \in i$, where $f^{\prime}(x)$ denotes $\frac{d f(x)}{d x}$ and $g(x)$ is a given nonconstant differentiable function on R with $g(0)=g(2)=0$. Then find the value of $y(2)$.
\qquad

