FACULTY RECRUITMENT TEST CATEGORY-C Formal School Education/XI, XII MATHEMATICS PAPER – B

Time: 60 Minutes.

Maximum Marks: 40

Name:		
Subject:	Marks:	

Instructions:

- Attempt all questions.
- This question paper has two Parts, I and II. Each question of Part I carries 2 marks and of Part II carries 5 marks.
- Calculators and log tables are not permitted

PART – I

- 1. Let $f(x) = \begin{cases} x^3 x^2 + 10x 5 & , x \le 1 \\ -2x + \log_2(b^2 2) & , x > 1 \end{cases}$, find the set of values of b for which f(x) have greatest value at x = 1.
 - •
- 2. In the expansion of $(1 + x + x^2 + \dots + x^{27})(1 + x + x^2 + \dots + x^{14})^2$, find the coefficient of x^{28} ?
- 3. Find the greatest & the least values of $|Z_1 + Z_2|$ if $Z_1 = 24 + 7i$ & $|Z_2| = 6$.
- 4. Prove that, the normal to $y^2 = 12x$ at (3, 6) meets the parabola again in (27, -18) and circle on this normal chord as diameter is $x^2 + y^2 30x + 12y 27 = 0$.

5. Show that: $\begin{vmatrix} \sin \alpha & \cos \alpha & 1 \\ \sin \beta & \cos \beta & 1 \\ \sin \gamma & \cos \gamma & 1 \end{vmatrix} = \sin (\alpha - \beta) + \sin (\beta - \gamma) + \sin (\gamma - \alpha).$

6. For all real values of a and b lines (2a + b) x + (a + 3b) y + (b - 3a) = 0 and mx + 2y + 6 = 0 are concurrent, then find the value of m.

7. Evaluate $\operatorname{Lt}_{n \to \infty} \left[\frac{1}{1+n} + \frac{1}{2+n} + \frac{1}{3+n} + \dots + \frac{1}{2n} \right]$

8. Find
$$\int_{2}^{e} \left(\frac{1}{\ell n x} - \frac{1}{\ell n^2 x}\right) dx$$

- 9. Find $\lim_{x\to 0^+} \left(\ln \sin^3 x \ln(x^4 + ex^3) \right)$
- 10 A question paper on mathematics consists of twelve questions divided into three parts A, B and C, each containing four questions . In how many ways can an examinee answer five questions, selecting atleast one from each part .

PART – II

- 1. Examine which is greater sinx tanx or x². Hence evaluate $\lim_{x\to 0} \left[\frac{\sin x \tan x}{x^2}\right]$, where x $\in \left(0, \frac{\pi}{2}\right)$
- 2. Let f(x) be continuous and differentiable function for all reals. f(x + y) = f(x) 3xy + f(y). If $\lim_{h \to 0} \frac{f(h)}{h} = 7$, then find the value of f'(x).
- 3. Suppose families always have one, two or three children, with probabilities $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{1}{4}$ respectively. Assume everyone eventually gets married and has children, find the probability of a couple having exactly four grandchildren.
- 4. If the solution of the differential equation $\frac{dy}{dx} + \frac{\cos x (3\cos y 7\sin x 3)}{\sin y (3\sin x 7\cos y + 7)} = 0$ is

 $(\sin x + \cos y - 1)^{\lambda} (\sin x - \cos y + 1)^{\mu} = c$, where c is arbitrary constant. Then find the value of $\lambda \mu$.