FACULTY RECRUITMENT TEST

CATEGORY-C
Formal School Education/XI, XII

MATHEMATICS

PAPER - B
Time: 60 Minutes.
Maximum Marks: 40

Name:...	
Subject:...	Marks:

Instructions:

(ro Attempt all questions.
(T) This question paper has two Parts, I and II. Each question of Part I carries 2 marks and of Part II carries 5 marks.

* Calculators and log tables are not permitted

PART - I

1. Let $f(x)=\left\{\begin{array}{ll}x^{3}-x^{2}+10 x-5 & , x \leq 1 \\ -2 x+\log _{2}\left(b^{2}-2\right) & , x>1\end{array}\right.$, find the set of values of b for which $f(x)$ have greatest value at $x=1$.
2. In the expansion of $\left(1+x+x^{2}+\ldots \ldots . .+x^{27}\right)\left(1+x+x^{2}+\ldots \ldots+x^{14}\right)^{2}$, find the coefficient of x^{28} ?
3. Find the greatest \& the least values of $\left|Z_{1}+Z_{2}\right|$ if $Z_{1}=24+7 i \&\left|Z_{2}\right|=6$.
4. Prove that, the normal to $y^{2}=12 x$ at $(3,6)$ meets the parabola again in $(27,-18)$ and circle on this normal chord as diameter is $\mathrm{x}^{2}+\mathrm{y}^{2}-30 \mathrm{x}+12 \mathrm{y}-27=0$.
5. Show that: $\left|\begin{array}{lll}\sin \alpha & \cos \alpha & 1 \\ \sin \beta & \cos \beta & 1 \\ \sin \gamma & \cos \gamma & 1\end{array}\right|=\sin (\alpha-\beta)+\sin (\beta-\gamma)+\sin (\gamma-\alpha)$.
6. For all real values of a and b lines $(2 a+b) x+(a+3 b) y+(b-3 a)=0$ and $m x+2 y+6=0$ are concurrent, then find the value of m .
7. Evaluate $\operatorname{Ltt}_{\mathrm{n} \rightarrow \infty}\left[\frac{1}{1+\mathrm{n}}+\frac{1}{2+\mathrm{n}}+\frac{1}{3+\mathrm{n}}+\ldots \ldots \ldots .+\frac{1}{2 n}\right]$
8. Find $\int_{2}^{e}\left(\frac{1}{\ell n x}-\frac{1}{\ell n^{2} x}\right) d x$
9. Find $\operatorname{Lim}_{x \rightarrow 0^{+}}\left(\ln \sin ^{3} x-\ln \left(x^{4}+e x^{3}\right)\right)$

10 A question paper on mathematics consists of twelve questions divided into three parts A, B and C, each containing four questions. In how many ways can an examinee answer five questions, selecting atleast one from each part .

PART - II

1. Examine which is greater $\sin x \tan x$ or x^{2}. Hence evaluate $\lim _{x \rightarrow 0}\left[\frac{\sin x \tan x}{x^{2}}\right]$, where x $\in\left(0, \frac{\pi}{2}\right)$
2. Let $f(x)$ be continuous and differentiable function for all reals. $f(x+y)=f(x)-3 x y+f(y)$. If $\operatorname{Lim}_{h \rightarrow 0} \frac{f(h)}{h}=$ 7 , then find the value of $f^{\prime}(x)$.
3. Suppose families always have one, two or three children, with probabilities $\frac{1}{4}, \frac{1}{2}$ and $\frac{1}{4}$ respectively. Assume everyone eventually gets married and has children, find the probability of a couple having exactly four grandchildren.
4. If the solution of the differential equation $\frac{d y}{d x}+\frac{\cos x(3 \cos y-7 \sin x-3)}{\sin y(3 \sin x-7 \cos y+7)}=0$ is $(\sin x+\cos y-1)^{\lambda}(\sin x-\cos y+1)^{\mu}=c$, where c is arbitrary constant. Then find the value of $\lambda \mu$.
\qquad
\qquad
