FACULTY RECRUITMENT TEST
 CATEGORY-C
 Formal School Education/XI, XII
 CHEMISTRY
 PAPER - A

Time: 60 Minutes.
Maximum Marks: 40

Name:..	
Subject:..	Marks:

Instructions:

Attempt all questions.

- This question paper has two Parts, I and II. Each question of Part I carries 2 marks and of Part II carries 5 marks.
Calculators and log tables are not permitted

PART - I

1. 75% of 1 st order reaction was completed in 32 minutes. When was 50% of the reaction completed?
2. What is the attacking electrophile in Reimer Tiemann reaction when phenol is treated with CHCl_{3} \& KOH ?
3. What is the pH of $10^{-2}(\mathrm{M})$ acetic acid? pka of acetic acid $=4.74$
4. \quad A halide $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{X}$ on treating with alc. KOH gives pentene -1 . What is the halide?
5. A colourless inorganic salt (A) decomposes completely at about $250^{\circ} \mathrm{C}$ to give only two products, (B) and (C), leaving no residue. The oxide (C) is a liquid at room temperature and neutral to moist litmus paper while the gas (B) is a neutral oxide. White phosphorus burns in excess of (B) to produce a strong white dehydrating agent. Write balanced equations for the reactions involved in the above process.
6. The standard oxidation potential of $\mathrm{Ni} / \mathrm{Ni}^{+2}$ electrode is 0.236 V . If this is combined with a hydrogen electrode in acid solution, at what pH of the solution will the measured emf be zero at $25^{\circ} \mathrm{C}$. Assume $\left[\mathrm{Ni}^{+2}\right]=1 \mathrm{M}$.
7. Element (A) burns in nitrogen to give ionic compound (B). Compound (B) reacts with water to give (C) and (D). A solution of (C) becomes milky on bubbling CO_{2}. Identify (A), (B), (C) and (D).
8. A metal wire carries a current of 1 ampere. How many electrons pass through a point in the wire in 1 second?

FAC-REC-CH-2

9. For the reaction, $2 \mathrm{CO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2} ; \Delta \mathrm{H}=-560 \mathrm{~kJ}$. Two moles of CO and one mole of O_{2} are taken in a container of volume 1 L . They completely form two moles of CO_{2}, the gases deviate appreciably from ideal behaviour. If the pressure in the vessel changes from 70 to 40 atm , find the magnitude (absolute value) of $\Delta \mathrm{U}$ at 500 K .
($1 \mathrm{~L} \mathrm{~atm}=0.1 \mathrm{~kJ}$)
10. Arrange the following as stated
(i) n -butane, n -butanol, n -butyl chloride, isobutane in increasing order of boiling point.
(ii) benzene, toluene, methoxybenzene, chlorobenzene in increasing order of reactivity towards sulphonation with fuming sulphuric acid.

PART - II

1. An organic compound $(A), \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ on reacting with aqueous KOH gives (B) and on reaction with alcoholic KOH gives (C) which is also formed on passing the vapours of (B) over heated copper. The compound (C) readily decolourises bromine water. Ozonolysis of (C) gives two compounds (D) and (E). Compound (D) react with $\mathrm{NH}_{2} \mathrm{OH}$ to give (F) and the compound (E) reacts with NaOH to give an alcohol (G) and sodium salt (H) of an acid. (D) can also be prepared from propyne on treatment with water in presence of Hg^{2+} and $\mathrm{H}_{2} \mathrm{SO}_{4}$. Identify (A) to (H) with proper reasoning.
2. Black coloured (insoluble in $\mathrm{H}_{2} \mathrm{O}$) solid (A) does not dissolve in dil. HNO_{3}. Aqua regia can dissolve (A) forming (B). (B) gives yellow precipitate (C) with NaOH . (B) also gives orange precipitate (D) with KI ; (D) dissolves in excess of KI forming (E). (E) gives brown precipitate with NH_{4}^{+}salt in presence of NaOH . (A) is precipitated if $\mathrm{H}_{2} \mathrm{~S}$ gas is passed into solution of (B) in dil. HCl . Identify (A) to (E) and explain reactions.
3. The K_{SP} of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ at $25^{\circ} \mathrm{C}$ is 1.29×10^{-11} mole ${ }^{3} \mathrm{I}^{-3}$. A solution of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ containing 0.152 mole in 500 mL water is shaken at $25^{\circ} \mathrm{C}$ with excess of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ till the equilibrium is reached.
$\mathrm{Ag}_{2} \mathrm{CO}_{3}+\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{K}_{2} \mathrm{CO}_{3}$
At equilibrium the solution contains 0.0358 mole of $\mathrm{K}_{2} \mathrm{CO}_{3}$. Assuming degree of dissociation of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ to be same, calculate K_{SP} of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$.
4. $\quad{ }_{92}^{238} \mathrm{U}$ by successive radioactive decay changes to ${ }_{82}^{206} \mathrm{~Pb}$. A sample of uranium ore was analysed and found to contain 1.0 gm of ${ }^{238} \mathrm{U}$ and 0.1 gm of ${ }^{206} \mathrm{~Pb}$. Assuming that all the ${ }^{206} \mathrm{~Pb}$ has accumulated due to decay of ${ }^{238} \mathrm{U}$, find the age of the ore (half-life of ${ }^{238} \mathrm{U}=4.5 \times 10^{9}$ years).
