1.

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007

MATHEMATICS

(SEMESTER - 4)

me : 3 l	Hours]				[Full Marks : 70		
+ * * * * * * * * * * * * * * * * * * *			Group -	A			
		(Multi _l	ple Choice Ty	e Questions)			
Cho	ose the cor	rect alternative	es for any ten o	f the following:	$10\times1=10$		
1)	The num						
	a) n ²		b)	2 ⁿ			
	c) 2 ⁿ	2	d)	none of these.			
ш)_	The Boole	ean function x	'y' + xy + x'y 1	s equivalent to			
	a) $x'+$	y /	b)	x + y			
	c) x ¹ +	y	d)	none of these.			
iii)	A comple	te graph is					
	a) regi	ular	b)	connected			
	c) sim	ple	d)	circuit.			
iv)	The dual	of a planar gra	ph is dual.				
	a) Tru	.e	b)	False.			
y	The gener	rating function	for the sequen	$ace \left(1, 1, \frac{1}{2!}, \frac{1}{3!}, \dots\right)$)is		
	a) <i>e</i> ^x		b)	e ^{-x}			
	c) log	(1+x)	d)	$(1-x)^{-1}$.			
vi)	The gene	rating function	for finite sequ	ence $\binom{n}{0}$, $\binom{n}{1}$,	$\binom{n}{2}$ $\binom{n}{n}$ is		
	a) (1	$-x)^n$	b)	$(1+x)^{-n}$			
	c) 1 +	x	d)	$(1+x)^n.$			
Aii)	The num	The number of edges in a tree with 50 vertices is					
•	a) 48		b)	49			
	c) 50		d)	51.			

07
Į

viii)	If th	If the cyclic group G contains 11 distinct elements, then it has					
	a)	2 generators	b)	7 generators			
	c)	9 generators	d)	10 generators.			
ix)	Solu	ntion of the recurrence relat	ion a _n	$a_{n+1} - 2a_n = 5$, $n \ge 0$, $a_0 = 1$ is			
	a)	6.2 ⁿ – 5	b)	5 - 6.2 ⁿ			
	(c)	2 ⁿ⁺¹ -1	d)	none of these.			
x)	Whi	ch of the following set is clos	sed und	der usual multiplication ?			
	a)	{ 1, -1, 0, 2 }	b)	{ 1, t}	•		
	c)	$\{1, \omega, \omega^2\}$	d)	{ \omega, 1 }.			
xi)	f:[$\left[0,\frac{\pi}{2}\right] \to R$ defined by $f(x)$) = sin:	k is a one to one mapping.			
	a)	True	b)	False.			
xii)	The	hamming distance between	11010	and 10101 is			
	a)	2	b)	3			
	c)	4	d)	0.	,		
xiii)	The	sum of the degree of all ver	tices o	f a graph is 40. Then the number	of edges		
	is		•				
	a)	10	b)	20			
	c)	25	d)	40.			
xiv)	If a	network contains 6 vertices	then t	he number of cuts in the network	ls		
	a)	14	b)	15			
	c)	16	d)	32 .			
LGQ_(T	IT)_B						

Group - B (Short Answer Type Questions)

Answer any three questions from the following.

 $3 \times 5 = 15$

- 2. Show that all roots of the equation $x^4 = 1$ form an Abelian group under multiplication.
- 3. Give examples with reasons of relations which are
 - a) reflexive, symmetric but not transitive.
 - b) symmetric, transitive but not reflexive.
- 4. In a Boolean algebra (B, +, ., /, 0, 1) show that
 - a) (a+b)+c=a+(b+c)
 - b) a + (a.b) = a
- 5. Show that the number of pendant vertices in a binary tree is $\frac{n+1}{2}$, where n is the number of vertices in the tree.
- 6. Using generating functions solve the recurrence relation with initial conditions: $a_n = 2a_{n-1}$ for $n \ge 1$, $a_0 = 3$.
- 7. Prove that every group of prime order is cyclic.

Group - C (Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

8. a) Let $G = \{(a, b) : a \neq 0, b \in R\}$ and * be a binary composition defined on

G by (a, b) * (c, d) = (ac, bc + d).

Show that (G, *) is a non-Abelian group.

5

- b) Show that for any two subgroups H and K of a group G, $H \cap K$ is also a subgroup of G.
- c) Let G be a group. If $a, b \in G$ such that $a^4 = e$, the identity element of G and $ab = ba^2$, prove that a = e.

- 9. a) Prove that every cyclic group is an Abelian group.
 - b) Show that the mapping $f: (Z, \cdot) \to (R, \cdot)$ defined by $f(x) = x^2$, $\forall x \in Z$ is a monomorphism but not isomorphism.
 - c) If in a ring R with unity, $(xy)^2 = x^2y^2 \forall x, y \in R$, then show that R is commutative.
- 10. a) Prove that the number of vertices in a binary tree is always odd.
 - b) Using Floyd Algorithm find the shortest path between v_1 and v_5 ; and v_2 and v_5 .

- 11. a) Prove that the set $\{\phi, \{a\}, \{a, c\}, \{c\}, \{a, b, c\}\}\$ is a lattice with respect to the relations \cap and \cup .
 - b) Construct a logic circuit that would satisfy the following truth table:

x	y	Z	Output
.0	0	0	. 1
0	0	1	1
0	1	0	0
0	1100	1110	no1 e e
# 114 d	0	0	100
1 ,	0	1	0
1	1	0	1
1	1	1	1

5

c) Examine whether the following two graphs are isomorphic.

12. a) Define complement of a graph. Find the complement of the graph.

b) Express the Boolean expression

$$E = \{ (xy)^T z \}^T \{ (x^T + z) (y^T + z^T) \}^T$$
in DNF.

- c) Draw the Hasse diagram for the divisibility on the set $A = \{2, 3, 6, 12, 24, 36\}$ and find the maximal and minimal elements.
- 13. a) Construct the Adjacency matrix of the diagraph.

b) Find all the spanning trees of the connected graph.

c) Draw the dual of the graph.

