TT	TINE	10.7	\sim	$\Lambda\Lambda$	O
.11	JN	Ю,	Z	00	8

Code: AC07/AT07 Subject: COMPUTER ARCHITECTURE
Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Cl	hoose the correct or best all	(2x10)			
	a.	Which of the following is a self complementing code?				
		(A) 8421 code	(B) 5211			
		(C) Gray code	(D) Binary code			
b		Which gate can be used as anti-coincidence detector?				
		(A) X-NOR	(B) NAND			
		(C) X-OR	(D) NOR			
	c.	Which of the following technology can give high speed RAM?				
		(A) TTL	(B) CMOS			
		(C) ECL	(D) NMOS			
	d.	In 8085 microprocessor how many I/O devices can be interfaced in I/O mapped I/O technique?				
		(A) Either 256 input devices or 256 output devices.(B) 256 I/O devices.				
		(C) 256 input devices & 256 output devices.				
		(D) 512 input-output device	es.			
	e.	After reset, CPU begins execution of instruction from memory address				
		(A) 0101 _H	(B) 8000 _H			

(D) $FFFF_H$

(C) 0000_H

Which is true for a typical RISC architecture?

(A) Micro programmed control unit.

(B) Instruction takes multiple clock cycles.

- **(C)** Have few registers in CPU.
- **(D)** Emphasis on optimising instruction pipelines.
- g. When an instruction is read from the memory, it is called
 - (A) Memory Read cycle
- (B) Fetch cycle

(C) Instruction cycle

- **(D)** Memory write cycle
- h. Which activity does not take place during execution cycle?
 - (A) ALU performs the arithmetic & logical operation.
 - **(B)** Effective address is calculated.
 - **(C)** Next instruction is fetched.
 - **(D)** Branch address is calculated & Branching conditions are checked.
- i. A circuit in which connections to both AND and OR arrays can be programmed is called
 - **(A)** RAM

(B) ROM

(C) PAL

- **(D)** PLA
- j. If a register containing data $(11001100)_2$ is subjected to arithmetic shift left operation, then the content of the register after 'ashl' shall be
 - (A) (11001100)₂

(B) $(11101100)_2$

(C) (10011001)₂

(D) (10011000)₂

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Consider the following circuit consisting of four D-FF and an EX-OR gate. The initial state of the circuit is (0000). Give the truth table showing the state of the output after 8 clock pulses. Does the pattern repeat itself? If so when?
 - (10)

b.	Implement the following by using 4:1 multiplexer	
	$P = \Pi(M_0, M_1, M_5, M_7)$	(6)

- Q.3 a. Explain with neat flow chart the addition and subtraction of floating point numbers. (10)
 - b. Multiply $(-7)_{10}$ with $(3)_{10}$ by using Booth's multiplication. Give the flow table of the multiplication. (6)
- **Q.4** a. Design a hardware circuit by using common bus architecture to implement the following Register Transfer Languages.

$$P: A_1 \leftarrow A_2$$

$$\mathsf{Q} \colon \mathbb{A}_2 \leftarrow \mathbb{A}_3$$

$$R: A_4 \leftarrow A_1$$

$$S: A_3 \leftarrow A_4, A_1 \leftarrow A_4$$

Where A_1, A_2, A_3, A_4 are one bit register.

- b. Explain hardware Polling method for data transfer. (6)
- Q.5 a. Explain with an example, how effective address is calculated in different types of addressing modes. (9)
 - b. How an interrupt is recognised? Explain the interrupt cycle. (7)
- Q.6 a. Compare assembly language with high level language. Write a program using assembly language of 8085 microprocessor to check whether a given number is odd or even. If the given number is even then display '1' on its SOD line. Give the flow chart also.
 (10)
 - b. Compare horizontal microcode with vertical microcode. State the advantage of micro programmed control unit.

(6)

- Q.7 a. Explain in detail the different mappings used for cache memory. Compare them. (10)
 - b. State how different policies of writing into cache are implemented. (6)
- Q.8 a. Design a hardware circuit to implement logical shift, arithmetic shift and circular shift operations.
 State your design specifications. (10)
 - b. Discuss different techniques used for interfacing I/O units with the processor. (6)

(10)

Q.9 Write short notes on:-

- (i) Sequential circuit.
- (ii) Priority encoder.
- (iii) Virtual memory.
- (iv) Program control instructions.

 (4×4)